博碩士論文 102328014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.119.131.178
姓名 李文義(WUN-YI LI)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 實驗研究密度比效應對紊流火焰速率之影響
(Experimental Investigation of Effect of Density Ratio on Turbulent Flame Speed)
相關論文
★ 預混紊流燃燒:火花引燃機制與加氫效應之定量量測★ 低氮氧化物燃燒器與加氫效應定量量測
★ 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析★ 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應
★ 實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度★ 棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響
★ 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測★ 自我加速蜂巢結構球狀火焰及其局部自我相似性之量測與分析
★ 加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析★ 高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1)
★ 加壓型氨固態氧化物燃料電池之性能和穩定性量測★ 平板式加壓型合成氣固態氧化物燃料電池實驗研究
★ 雷射直寫系統最佳化及其單一細胞列印與光電醫學之應用★ 加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測
★ 高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析★ 合成氣固態氧化物燃料電池添加二氧化碳之實驗研究:電池性能與穩定性量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 數十年來,紊流燃燒率w ̇_t,它可由火焰(位移)速率SF或燃燒(消耗)速度uc來代表,一直是實驗研究預混燃燒的重點。其中,有一重要的燃氣特性,即密度比= u/b(下標u和b分別代表未燃燃氣和已燃生成物),當進行參數化SF或uc之實驗數據時,的效應在實驗上幾乎從未被研究過。由預混紊流火焰基本了解的觀點來看,密度比對燃燒率的影響是有其重要的價值,而目前僅有少數數值和理論研究有討論此一密度比效應,急需一目標特定的實驗來驗證。本論文的目標,即是實驗驗證密度比對燃燒率的影響。我們使用特別準備的燃氣(化學計量甲烷/空氣燃氣),它結合了預熱和稀釋,使得在常溫條件下之燃氣與在高溫稀釋條件下之燃氣,兩者可維持相同的層流燃燒速率但彼此具有明顯不同的密度比,藉由量測其紊流火焰速率,來實驗研究對w ̇_t之影響效應。實驗於中央大學已建立之雙腔體十字型燃燒器並加上新設計之加熱器的設施中進行,它可產生近似等向性紊流和一具均勻高溫環境。從統計球狀擴張化學計量甲烷/空氣火焰,其在不同的方均根紊流擾動速度uʹ所獲得的實驗數據顯示,當在低u′⁄S_L <1條件下,火焰速率隨密度比增加而相當微弱地增加,而在適度u′⁄S_L >1條件下,火焰速率與密度比無關。最後,紊流火焰速率在u′⁄S_L =0.4時所量測到的數值,在所有不同條件下(預熱和稀釋)皆不大於層流燃燒速率。
摘要(英) Turbulent combustion rate w ̇_t characterized using either flame (displacement) speed SF or burning (consumption) velocity uc was in the focus of experimental research into premixed combustion for many decades. There is an important mixture characteristic, i.e. the density ratio σ=ρ_u⁄ρ_b , that has yet been rarely used when parameterizing experimental data on SF or uc. While the influence of the density ratio on the combustion rate is of great interest for basic understanding of premixed turbulent flames and was addressed in a couple of numerical and theoretical studies, this issue is still waiting for a target-directed experimental investigation. The goal of this thesis is to fill this gap by measuring turbulent flame speeds in mixtures that have been specially prepared by combining preheating and dilution of unburned reactants in order to retain the laminar flame speed unchanged, but substantially change the density ratio. The experiments are conducted in a dual-chamber explosion facility that has been extensively used to measure propagation speeds of expanding turbulent flames at National Central University. The facility with new modifications for heating consisted of a large inner 3D cruciform burner situated within a huge outer chamber, capable of generating near-isotropic turbulence and producing a uniform high-temperature environment. Experimental data obtained from statistically spherical expanding stoichiometric methane-air flames at various r.m.s. turbulent velocities u′ show that the flame speed is very weakly increased by the density ratio at low u′⁄S_L <1 and is independent of the density ratio at moderate u′⁄S_L >1. Moreover, turbulent flame speeds measured at u′⁄S_L = 0.4 are not larger than the laminar flame speeds in all cases investigated.
關鍵字(中) ★ 高溫預混燃燒
★ 弱紊流預混燃燒
★ 密度比效應
★ 流力(Darries-Landau)不穩定性
★ 指狀結構不穩定性
關鍵字(英)
論文目次 目錄
摘要----------------------------------------------------------------------------------I
Abstract---------------------------------------------------------------------------III
致謝--------------------------------------------------------------------------------V
目錄-------------------------------------------------------------------------------VI
圖目錄--------------------------------------------------------------------------VIII
表目錄----------------------------------------------------------------------------IX
符號說明--------------------------------------------------------------------------X
第一章、前言與文獻回顧------------------------------------------------------1
第二章、實驗方法與條件------------------------------------------------------7
2.1高溫高壓預混紊流燃燒設備-----------------------------------------7
2.2實驗方法-----------------------------------------------------------------8
2.2.1燃氣條件----------------------------------------------------------8
2.2.2火焰影像擷取和分析------------------------------------------10
2.2.3 層流火焰速率量測--------------------------------------------11
2.3實驗步驟----------------------------------------------------------------12
第三章、結果--------------------------------------------------------------------17
第四章、討論--------------------------------------------------------------------24
第五章、結論與未來工作-----------------------------------------------------29
5.1結論----------------------------------------------------------------------29
5.2未來工作----------------------------------------------------------------30
參考文獻--------------------------------------------------------------------------31
參考文獻 [1] R. G. Abdel-Gayed, D. Bradley, M. Lawes, Proc. R. Soc. London A 414 (1987) 389–413.
[2] Ö. L. Gülder, Proc. Combust. Inst. 23 (1990) 743–750.
[3] A. N. Lipatnikov, J. Chomiak, Prog. Energy Combust. Sci. 28 (2002) 1–74.
[4] H. Kobayashi, K. Seyama, H. Hagiwara, Y. Ogami, Proc. Combust. Inst. 30 (2005) 827–834.
[5] S. A. Filatyev, J. F. Driscoll, C. D. Carter, J. M. Donbar, Combust. Flame 141 (2005) 1–21.
[6] C. G. Lawn, R. W. Schefer, Combust. Flame 146 (2006) 180–199.
[7] R. K. Cheng, D. Littlejohn, P. A. Strakey, T. Sidwell, Proc. Combust. Inst. 32 (2009) 3001–3009.
[8] S. Daniele, P. Jansohn, J. Mantzaras, K. Boulouchos, Proc. Combust. Inst. 33 (2011) 2937–2944.
[9] P. Tamadonfar, Ö. L. Gülder, Combust. Flame 161 (2014) 3154–3165.
[10] G. Troiani, F. Creta, M. Matalon, Proc. Combust. Inst. 35 (2015) 1451–1459.
[11] F. Wu, A. Saha, S. Chaudhuri, C. K. Law, Proc. Combust. Inst. 35 (2015) 1501–1508.
[12] S. S. Shy, C. C. Liu, J. Y. Lin, L. L. Chen, A. N. Lipatnikov, S. I. Yang, Proc. Combust. Inst. 35 (2015) 1509–1516.
[13] P. Venkateswaran, A. Marshall, J. Seitzman, T. Lieuwen, Combust. Flame 162 (2015) 375–387.
[14] S. Kheirkhah, Ö. L. Gülder, Combust. Flame 162 (2015) 1422–1439.
[15] B. Karlovitz, D. W. Denniston, F. E. Wells, J. Chem. Phys. 19 (1951) 541–547.
[16] A. N. Lipatnikov, J. Chomiak, Prog. Energy Combust. Sci. 36 (2010) 1–102.
[17] P. Clavin, F. A. Williams, J. Fluid Mech. 90 (1979) 589–604.
[18] P. A. Libby, K. N. C. Bray, AIAA J. 19 (1981) 205–213.
[19] J. B. Moss, Combust. Sci. Technol. 22 (1980) 119–129.
[20] T. Yanagi, Y. Mimura, Proc. Combust. Inst. 18 (1981) 1031–1039.
[21] K. N. C. Bray, Proc. R. Soc. London A 451 (1995) 231–256.
[22] D. Veynante, A. Trouvé, K. N. C. Bray, T. Mantel, J. Fluid Mech. 332 (1997) 263–293.
[23] A. Mura, M. Champion, Combust. Flame 156 (2009) 729–733.
[24] A. N. Lipatnikov, Flow Turbul. Combust. 86 (2011) 609–637.
[25] V. L. Zimont, F. Biagioli, Combust. Theory Modelling 6 (2002) 79–101.
[26] G. Lecocq, S. Richard, O. Colin, L. Vervisch, Combust. Sci. Technol. 182 (2010) 465–479.
[27] V. Robin, A. Mura, M. Champion, Combust. Sci. Technol. 184 (2012) 1718–1742.
[28] A. N. Lipatnikov, V. A. Sabelnikov, S. Nishiki, T. Hasegawa, N. Chakraborty, Flow, Turbul. Combust. 94 (2015) 513–526,
[29] V. A. Sabelnikov, A. N. Lipatnikov, Combust. Theory Modelling 17 (2013) 1154–1175.
[30] V. A. Sabelnikov, A. N. Lipatnikov, Combust. Flame 162 (2015) 2893–2903.
[31] T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, 2nd ed., Edwards, Philadelphia, 2005.
[32] N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, UK, 2000.
[33] A. N. Lipatnikov, Fundamentals of Premixed Turbulent Combustion, CRC Press, Florida, 2012.
[34] L. D. Landau, E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 1987.
[35] A. N. Lipatnikov, J. Chomiak, Prog. Energy Combust. Sci. 31 (2005) 1–73.
[36] S. Chaudhuri, V. Akkerman, C. K. Law, Phys. Rev. E 84 (2011) 026322.
[37] N. Fogla, E. Creta, M. Matalon, Combust. Flame 162 (2015) 2758–2777.
[38] V. R. Kuznetsov, V. A. Sabelnikov, Turbulence and Combustion, Hemisphere, NY, 1990.
[39] R. N. Paul, K. N. C. Bray, Proc. Combust. Inst. 26 (1996) 259–266.
[40] V. Akkerman, V. Bychkov, Combust. Theory Modelling 9 (2005) 323–351.
[41] N. Swaminathan, R. W. Grout, Phys. Fluids 18 (2006) 045102.
[42] N. Chakraborty, M. Champion, A. Mura, N. Swaminathan, in: N. Swaminathan, K. N. C. Bray (Eds.), Turbulent Premixed Flames, Cambridge University Press, Cambridge, UK, 2011.
[43] T. Sponfeldner, I. Boxx, F. Beyrau, Y. Hardalupas, W. Meier, A. M. K. P. Taylor, Proc. Combust. Inst. 35 (2015) 1269–1276.
[44] H. Kolla, J. W. Rogerson, N. Chakraborty, N. Swaminathan, Combust. Sci. Technol. 181 (2009) 518–535.
[45] A. N. Lipatnikov, J. Chomiak, V. A. Sabelnikov, S. Nishiki, T. Hasegawa, Proc. Combust. Inst. 35 (2015) 1401–1408.
[46] A. Y. Poludnenko, Phys. Fluids 27 (2015) 014106.
[47] S. S. Shy, W. J Lin, J. C. Wei, Proc. R. Soc. Lond. A 456 (2000) 1997-2019.
[48] S. S. Shy, W. K. I, M. L. Lin, Exp. Therm. Fluid Sci. 20 (2000) 105-114.
[49] S. S. Shy, W. J. Lin, K. Z. Peng, Proc. Combust. Inst. 28 (2000) 561-568.
[50] C. C. Liu, S. S. Shy, H. C. Chen, M. W. Peng, Proc. Combust. Inst. 33 (2011) 1293-1299.
[51] T. S. Yang, S. S. Shy, Y. P. Chyou, J. Mech. 21 (2005) 157-169.
[52] T. S. Yang, S. S. Shy, J. Fluid Mech. 526 (2005) 171-216.
[53] C. C. Liu, S. S. Shy, C. W. Chiu, M. W. Peng, H. J. Chung, Int. J. Hydrogen Energy 36 (2011) 8595-8603.
[54] B. Galmiche, F. Halter, F. Foucher, P. Dagaut, Energy Fuels 25 (2011) 948–954.
[55] A. N. Lipatnikov, S. S. Shy, W. Li, Combust. Flame 162 (2015) 2840-2854.
[56] P. Clavin, Prog. Energy Combust. Sci. 11 (1985) 1–59.
[57] A. N. Lipatnikov, J. Chomiak, Combust. Sci. Technol. 154 (2000) 75–117.
[58] A. N. Lipatnikov, J. Chomiak, Combust. Sci. Technol. 176 (2004) 331–358.
[59] A. N. Lipatnikov, J. Chomiak, Proc. Combust. Inst. 31 (2007) 1361–1368.
[60] S. Chaudhuri, F. Wu, C. K. Law, Phys. Rev. E 88 (2013) 033005.
[61] V. Bychkov, Phys. Rev. E 68 (2003) 066304.
[62] J.-M. Truffaut, G. Searby, Combust. Sci. Technol. 149 (1999) 35–52.
[63] R. Addabbo, J. K. Bechtold, M. Matalon, Proc. Combust. Inst. 29 (2002) 1527–1535.
[64] C. R. Bauwens, J. M. Bergthorson, S. B. Dorofeev, Proc. Combust. Inst. 35 (2015) 2059–2066.
[65] C. Ghenaï, F. G. Gouldin, I. Gökalp, Proc. Combust. Inst. 27 (1998) 979–987.
[66] A. N. Lipatnikov, J. Chomiak, V. A. Sabelnikov, S. Nishiki, T. Hasegawa, 36th Symp. (Int.) on Combust., submitted, 2015.
指導教授 施聖洋 審核日期 2015-11-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明