博碩士論文 102328015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.229.142.104
姓名 曾正偉(Cheng-Wei Tseng)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 稻殼於流體化床進行快速裂解產製生質燃油之研究
(Fast pyrolysis of rice husks in a fluidized-bed for bio-oil production)
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響
★ 反向氣流對微小粉末於儲槽排放行為影響之研究★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化
★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響★ 添加微量液體對振動床中顆粒體分離現象的影響
★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究★ 二維剪力槽中顆粒體群聚現象之研究探討
★ 直渠道顆粒流之顆粒密度分離效應★ 粉粒體於儲槽排放行為及氣泡現象之研究
★ 初始體積占有率影響顆粒崩塌行為之研究★ 泰國能源及永續發展分析:投入產出技術之應用
★ 雙流化床氣化冷流系統之計算流體力學 (CFD) 研究與實驗驗證★ 二維移動顆粒床濾池兩階段模式下的速度場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 根據國際能源總署(International Energy Agency,IEA)2011年的統計資料,目前生質能為全球第四大能源,僅次於石油、煤及天然氣,供應了全球約19%的初級能源需求,同時也是目前最廣泛使用的再生能源,約占世界所有再生能源應用的80%。
生質燃料是一種從可再生生物資源,例如生質物,已處理城市廢棄物以及工業垃圾所製造的燃料。生質燃料被廣泛的分類為初級生質燃料與次級生質燃料。本研究以稻殼之生質物為原料,並由流體化條件、液態產率及熱裂解條件與化學分析進行相關研究與探討。
首先,影響最小流體化速度的因素主要有:顆粒直徑、流體黏度等;當載氣流速在0.35m/s (2.33umf)時,平均生質油產率約在20wt%左右,優於其他流速,此時流體化床狀態較佳,使得生質原料裂解效果較好,生質油pH值酸性較弱,酸性物質不易與生質油本身發生二次反應,化學性質安定。溫度對於流體化床壓降的影響不大,同一粒徑的壓降值幾乎相同;當床質尺寸為0.40mm (粒徑比為5.15)時,生質油產率表現最佳(32.18wt%),流體化程度較完整,碳轉化率最高,生質油pH值酸性較弱,不易發生二次反應,性質安定,元素種類含量,以C、H、O三元素佔大多數,其中碳元素含量最高(約20wt%),氫元素則在10-15wt%,氮元素與硫元素極低,其餘為氧元素。
第二,在反應溫度500℃時,生質油產率較高 (23wt%-32wt%),而焦炭與合成氣則隨之下降,HHV表現較佳 (7254.1kcal/kg),pH值酸性較弱,生質油裂解及轉換效率較佳,反應較完全。另因升溫模式的TGA分析模型已有研究者完成,且等溫模式到達穩態溫度所需的時間較短,反應條件較穩定,故本研究使用模式為等溫模式TGA測定原料之熱重損失,觀測原料裂解之特性,並利用等溫模式計算其裂解反應動力參數;熱裂解後生質油化合物的面積濃度含量較明顯的為:Acetic anhydride(乙酸酐)、1,2-benzenediol(鄰苯二酚)、2-methylphenol(2-甲基苯酚)、phenol(苯酚)。
最後,由相關係數判斷,在粒徑等於0.1、0.4、0.8mm時,流體化壓降對生質油產率為負相關,壓降越小(越接近0.30m/s,2umf),生質油產率越大,可見最小起泡流體化速度umb (實際操作氣速)相當接近0.30m/s (2umf);液態產物中,甲基環戊烯醇酮的表現極突出,在碳元素含量、生質油HHV、生質油pH值變化均呈正相關;而乙酸酐、甲苯則在碳元素含量、碳轉化率、生質油HHV變化為負相關;對苯甲酚(4-methylphenol)在碳轉化率呈高度正相關。
摘要(英) The research can be discussed in two aspects, including fluidizing condition-liquid yield and pyrolysis condition-chemical analysis.
Firstly, the main factor that affects minimum fluidizing velocity (umf) is particle size. When gas velocity falls on 2.33 umf, average oil yield is about 20wt.% which is better than other values, and the pH value is higher, which means bio-oil is hard to second-react with acidic matters in it. Temperature doesn’t have many things to do with fluidizing pressure drop as the value of each size keeps the same; When particle size falls on 0.40mm, there is the best yield of all, 32.18 wt.%. And carbon conversion rate is also higher as acidity is weaker. C, H, O three elements take the majority in bio-oil. For C, is about 20wt.%, for H, is about 10-15wt.%, for the rest part is O as N and S are very few.
Secondly, at 500℃, there are higher oil-yield of 23wt%-32wt%, and so as HHV, the best one is 7254.1kcal/kg. And acidity is weaker while conversion rate is better. For the reason that TGA analysis models of biomass in heating mode have been set up by some researchers while isothermal mode haven’t and needs shorter time to reach steady temperature, this research use isothermal mode to test the thermal-gravimetric loss of biomass observe the properties of pyrolysis, and calculate the pyrolysis dynamic parameters. The chemicals that have apparent area concentration in bio-oil are Acetic anhydride, 1,2-benzenediol, 2-methylphenol and phenol.
Finally, consider those correlation coefficients, the fluidizing pressure drops are negatively related to oil yields. When pressure drops get smaller, closer to 2 umf, the oil yields get higher, which means that the minimum bubbling velocity, umb, is quite close to 2umf ; In chemicals contained in the oil, 2-hydroxyl-3-methyl-2-cyclopenten-1-one is dominant in carbon content, HHV and pH value, and is positively related to them; Meanwhile, acetic anhydride and toluene are negatively related to carbon content, HHV, carbon conversion rate; 4-methylphenol is highly positively related to carbon conversion rate.
關鍵字(中) ★ 生質物
★ 氣泡式流體化床
★ 快速熱裂解
★ 生質柴油
關鍵字(英) ★ biomass
★ bubble fluidized-bed
★ fast pyrolysis
★ bio-oil
論文目次 中文提要 ....................................................... ................ .............. ........... ..... ……. iv
英文提要 ……...................................................... ................ ............. ........... ..... …….v
誌謝 . ................ ........................................................................... ............ ..... ............. vi
目錄 ....................... ............................. ................ ................ ..................................vii
表目錄 ….... ................ ...................................................... ................. ..... ..... ……ix
圖目錄 ...................................................... .................. ........... ............ ..... ...............x
符號說明.................................................................... .................. .......... ............ ..... ……. xiii
1. 第一章緒論....... ................ ............................................................. ...... ............ ........ ....1
1.1. 顆粒流暨生質能簡介......................................... .................. ..... ....... .. .......... ........ .....1
1.2. 流體化與流體化床.................................................. ................ .............. ......... ........ .....1
1.2.1. 氣泡式流體化床的特點……………………….………………………….. ........ ......3
1.2.2. 流體化的評估方法…………………………….………………………….. ........ ......3
1.2.3. 粒子流體化差異的分類……………………….………………………….. ........ ......4
1.2.4. 最佳(氣泡) 流體化速度之決定……………….…………………………. ........ ......4
1.2.5. 流體化載氣之決定……………….……………………………………….. ........ ......5
1.3. 生質能概論.................................................... ....... ........................................... ........ .....5
1.3.1. 生質燃料之分類............................................ ................. ................ ............. ........ ....5
1.3.2. 生質原料–稻殼簡介…………………………….……………………….. ........ ........7
1.3.3. 生質物快速熱裂解............................................... ................ ...... ....... ……........ ......7
1.3.3.1. 生質物熱裂解參數………………………….……………………………........ .......8
1.3.3.2. 生質物熱裂解粒徑………………………….………………………….. ........ ........8
1.3.3.3. 生質物熱裂解溫度…………………………………………………….. ........ ...... ..9
1.3.3.4. 生質物熱裂解熱值…………………………………………………….. ........ ...... ..9
1.4. 前後端分析…………………………………….…………………………........ .......... ..9
1.4.1. 由TGA分析計算化學反應動力係數………….…….………………….. ........ .........9
1.4.2. 等溫模式與升溫模式熱重損失比較…………..…….…………………. ................10
1.4.3. 後端-GC/MS 分析…………………………….…………………………................10
1.5. 研究動機、目的與架構……………………………………………………. ..............10
2. 第二章實驗設備、步驟及參數…...................................... .................. ....... .. ............12
2.1. 實驗顆粒體................................................. ................ ............. …....... ........... ........ ..12
2.1.1. 床質材料…................................................. ................ ................ ….......... .............12
2.1.2. 生質物材料……............................................ ................ ................ ........... .............12
2.2. 實驗設備與儀器........................................... ................ …. ....... ..... ……….. ............12
2.2.1. 實驗及量測儀器…………………………………..……………………..…............12
2.3. 分析儀器.................................................... ........ ........ ......... ........ ........ ........ ............13
2.3.1. 熱重分析儀.............................................. ........... ................ ….............. ........ ........13
2.3.2. 氣相色譜法¬¬-質譜法聯用GC-MS............................. ........... .............. ........ ........14
2.3.3. 熱卡計.. ........................................... ........... ................ .......................... ........ ........14
2.4. 分析參數................................................. ................ ............. ...... ........... ........ ..........14
2.4.1. 進料速率................................................ .............. ................ ............ ........ ............14
2.4.2. 生質物/惰性床質粒徑大小................................. ................ ............. ........ ............15
2.4.3. 入口風速................................................ .. ................ ................ ....... ........ ............15
2.4.4. 熱裂解溫度.............................................. ................ ................ ........ ........ ............15
2.4.5. 逆壓流量當量計算........................................ ........... ................ ....... ........ ............15
2.5. 實驗流程及步驟.............................................. ........... .... .... ........ ..... ... ........ ..........17
2.5.1. 實驗配置................................................. ........... ......... .. ..... ........... .. ........ ..........17
2.5.2. 實驗步驟................................................. ........... .......... .. ..... .... ..... .... ........ ........17
3. 第三章流體化與生質油產率....................................... ........... ................. ..... ........ ...18
3.1. 流體化評估方法................................. ........ ................ ..... ....... ..... ….. ......... ..........18
3.2. 氣、液、固態產物分析...................................... ........... ................ .......... ......... ......19
3.3. 生質油產率與流體化程度之相關係數研究……………………………......... .........20
4. 第四章熱裂解與化學分析……………………………………………………..... ......21
4.1. 裂解反應動力參數之計算.................................. ................ ..... ..... …….. ......... ......21
4.2. 生質油品成分GC-MS分析..................................... ........... ................ ... ......... .......22
4.3. 生質油基本元素EA分析...................................... ........... ................ ..... ......... .......23
4.4. 生質油碳轉化率分析……………………………………………………. ........ .......23
4.5. 生質油熱值分析........................................... ........... ................ ................. ........ ......23
4.6. pH值分析................................................... ........... ................ ................... ........ ......24
4.7. 元素分析、熱值分析和pH值與GC-MS分析之相關係數研究…….. ........ ........24
4.7.1. 生質油碳元素含量與GC-MS分析之相關係數研究………………. ........ ........25
4.7.2. 生質油碳轉化比率與GC-MS分析之相關係數研究………………........ ..........25
4.7.3. 生質油燃燒熱值與GC-MS分析之相關係數研究…………………........ ..........25
4.7.4. 生質油pH值與GC-MS分析之相關係數研究……………………........ ...........26
4.7.5. GC-MS分析相關係數綜合討論……………………………………. ........ .........26
5. 第五章結論..................................................... ........... ................ .............. ........ .......27
參考文獻 ...................................................... ........... ................ ................... ........ ..........86
附錄 ...................................................... ........... ................ ............................ ..................88
參考文獻 Akgiray, Ö. and Saatçı, A. M. . “A New Look at Filter Backwash
Hydraulics,” Water Science and Technology: Water Supply, Vol:1,
Issue:2, pp.65-72,2001.
Alsbou. E., and Helleur, R.”Whole sample analysis of bio-oils and thermal
cracking fractions by Py-GC/MS and TLC–FIDE” Journal of Analytical and Applied Pyrolysis 2013 Vol.101 pp.222-231,2013.
Bridgwater. A.V., and Peacocke. G.V.C., Fast pyrolysis processes for biomass
Bio-Energy Research Group, Aston University, Birmingham, B4 7ET,
UK,2000.
Chhiti and Kemiha, ” Thermal Conversion of Biomass, Pyrolysis and
Gasification: A Review” The International Journal of Engineering And
Science (IJES), Volume 2, Issue, 3, P75-85,2013.
Ergun, S., Orning. A.A., “Fluid flow through packed columns”. Chem. Eng.
Prog. 48,1952.
Geldart, D. . "Types of gas fluidization". Powder technology. 7 (5): p285–292. ,1973.
H. Zhang et al., “Biomass fast pyrolysis in a fluidized bed reactor under
N2, CO2, CO, CH4 and H2 atmospheres.” Bioresour Technol. 2011
Mar;102(5):4258-64.
IEA.“World Enenrgy Outlook” International EnergyAgency.
ISBN: 978 92 64 12413 4,2011.
Klass, D. L., “Thermal Conversion: Pyrolysis and Liquefaction,”
Biomass for Renewable Energy, Fuels, and Chemicals Ch8.
ISBN: 978-0-12-410950-6,1998.
Onay.O., and ,Kockar.O. M., , “Slow, fast and flash pyrolysis of rapeseed,”
Renewable Energy 28 (2003) 2417–2433,2003.
P. Kim et al., “Thermal desorption of creosote remaining in used railroad ties:
Investigation by TGA (thermogravimetric analysis) and Py-GC/MS
pyrolysis-gas chromatography/mass spectrometry) “ Energy 96 (2016)
p294-302 ,2015.
Park et al., “Effects of the operating parameters on the production of
bio-oil in the fast pyrolysis of Japanese larch,” Chemical Engineering
Journal 143 p124–132,2008.
Restek Corporation “Optimizing the Analysis of Volatile Organic
Compounds,” Technical Guide, Lit. Cat. 59887A ,2003.
Sutherland, W. , “The viscosity of gases and molecular force”, Philosophical
Magazine, S. 5, 36, pp. 507-531.,1893.
Wright et al., “Techno-Economic Analysis of Biomass Fast Pyrolysis to
Transportation Fuels,” National Renewable Energy Laboratory, U.S.A.,
2010.
中國常州工程職業技術學院化學反應過程與設備精品課程 5.1.3 流化床的
壓降與流速 ,2015?,
取自:http://web.czie.net/jpkc/hx/WLKC/content/ch6/6_1_3.htm
朱金忠等人, “稻草及熱解半焦顆粒流化特性” The Chinese journal of
Process Engineering Vol. 10 Issue (1) :p 46-50,2010.
行政院「再生能源發展條例」中華民國行政院,2009.
行政院「2007年產業科技會議結論」, 中華民國行政院科技顧問組,2007.
吳耿東 「認識生質能源」,物理雙月刊,30(4),pp. 377-388 ,2008.
李宏台等人,「我國生質能源之應用」, 經濟前瞻 p55-59,2005/5/5
邱約翰, 「木質生質物於流體化床進行快速裂解之研究」, 碩士論文,
國立中興大學森林系, 臺中市, 臺灣(R.O.C.),2010.
笛妮崔(Mairena., D. C.,), 「生質燃料〈麻瘋樹〉的能源平衡與環境生命
週期評估:在尼加拉瓜的案例研究」碩士論文, 國立中央大學國際
永續發展碩士在職專班, 桃園市, 臺灣(R.O.C.),2012.
許晨霈, 「稻殼於氣泡式流體化床中快速熱解之研究」碩士論文, 長庚大學
化工與材料工程系, 桃園市, 臺灣(R.O.C.),2014
陳政煌等人, 「稻桿裂解油產製與特性」, 中華民國燃燒學會第二十一屆
學術研討會論文集 2011/3/26.
鄒家柱, 劉澤華, 「生物質與惰性顆粒流化特性的實驗研究」南華大學學報
(自然科學版)Vol.25 No.2,Jun., 2011.
蔣萬福, 「非燃料燃燒空氣污染物減量技術探討」博士論文, 國立雲林科技
大學工程科技研究所, 雲林縣,臺灣(R.O.C.),2009.
謝志強「生質柴油市場與技術發展概觀」電子與電腦 卷期:101 p82-87,
2007.09.
羅國肇「流體化床燃燒爐—由糖炒栗子談起」《科學發展》,450期,
p6 ~ 11,2010年6月.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2016-11-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明