博碩士論文 102328601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.19.56.45
姓名 徐大威(XU DAWEI)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 以多孔矽為基板的矽奈米線陣列結構製程研究
(Study for Fabricating the Alignment Structure of Si Nanowire on Porous Si Substrate)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於奈米結構具有很大的比表面積,對太陽光有很強的吸收作用,同時還具有優良的電學性能,奈米材料在光電元件上的應用越來越廣泛。矽奈米線陣列在太陽能電池等光電元件上得以應用,但仍存在生產過程的資源利用率不高,過度消費原材料;生產出來的產品均勻性不好,無法大面積生產等等問題。因此,對矽奈米線陣列性質的研究,並改進其製程具有重要意義。
本實驗研究了矽奈米線陣列結構的形成機理,詳細分析了蝕刻過程從成核到蝕刻完成的具體流程,並提出了一套區別于以往文獻的理論說明。在此基礎上,根據其成核與蝕刻規律,創新性得提出一套一多孔矽為基板,旋轉塗佈銀奈米粒子,進而進行蝕刻的方法,得到了排列更加均勻的矽納米線陣列結構。
摘要(英) Nano materials has been widely used in optoelectronic devices because its large surface area, strong light absorption and excellent electrical properties. Silicon nanowire structure is now used in solar cells, but is still limited by the poor material quality, uniformity, and mass production. So it is meaningful to investigating the Si nanowire etching mechanism to find out the high yield process.
In this research, we investigated the formation mechanism of Silicon nanowire, and analyzed the process of nanowire formation. Then we introduced a new concept by based on Galvanic corrosion theory that is different from previous theories. Based on the experiment, we developed a new method of silicon nanowire etching, in which the etching process is happened on a porous silicon wafer with silver nanoparticals spin coated. In the study, we achieved a highly ordered silicon nanowire.
關鍵字(中) ★ 多孔矽
★ 奈米線
★ 金屬輔助化學蝕刻
關鍵字(英)
論文目次 目錄

中文摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 2
第二章 原理與文獻回顧 3
2.1矽奈米線陣列的製備 3
2.1.1化學氣相沉積法 4
2.1.2金屬輔助化學蝕刻法(MACE) 5
2.2 多孔矽的製備原理 8
2.2.1多孔矽的發現 8
2.2.2多孔矽的形成機制 9
2.2.3多孔矽成形的理論模型 10
2.2.3.1貝爾模型(The Beale Model) 10
2.2.3.2擴散限制模型(Diffusion-Limited Model) 11
2.2.3.3量子模型(The Quantum Model) 12
第三章 實驗原理與實驗步驟 16
3.1 實驗概述 16
3.2 實驗原理與方法 16
3.2.1 金屬輔助化學蝕刻法製備矽奈米線 16
3.2.2 電化學法製備多孔矽 17
3.3 實驗器材 17
3.4 分析儀器介紹 18
3.5 實驗過程 19
3.5.1矽試片的切割和清洗 19
3.5.2 矽奈米線的蝕刻 20
3.5.3 多孔矽的蝕刻 20
3.5.4 銀奈米粒子的成核特性研究 21
第四章 結果與討論 26
4.1 蝕刻時間對矽奈米線陣列結構的影響 26
4.2兩步法中雙氧水濃度對矽奈米線形貌的影響 28
4.3 基板電阻值差異對矽奈米線形貌的影響 28
4.4 矽奈米線陣列的形成過程分析 29
4.5 以多孔矽為基板的製程改進 30
第五章 結論 47
參考文獻 49
參考文獻 參考文獻

[1] Renard, Vincent T., et al. "Catalyst preparation for CMOS-compatible silicon nanowire synthesis." Nature nanotechnology 4.10 (2009): 654-657.
[2] Wu, Yue, et al. "Controlled growth and structures of molecular-scale silicon nanowires." Nano Letters 4.3 (2004): 433-436.
[3] Wu, Yue, et al. "Controlled growth and structures of molecular-scale silicon nanowires." Nano Letters 4.3 (2004): 433-436.
[4] D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel. Control of Thickness and Orientation of Solution-Grown Silicon Nanowires. Science, 2000, 287(5457): 1471-1473.
[5] Heitsch, Andrew T., et al. "solution−liquid−solid (SLS) growth of silicon nanowires." Journal of the American Chemical Society 130.16 (2008): 5436-5437.
[6] Juhasz, Robert, Niklas Elfström, and Jan Linnros. "Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction." Nano letters 5.2 (2005): 275-280.
[7] Tong, Hien Duy, et al. "Novel top-down wafer-scale fabrication of single crystal silicon nanowires." Nano letters 9.3 (2009): 1015-1022.
[8] Garnett, Erik, and Peidong Yang. "Light trapping in silicon nanowire solar cells." Nano letters 10.3 (2010): 1082-1087.
[9] Peng, Kui-Qing, et al. "Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry." Advanced Materials 14.16 (2002): 1164.
[10] Choi, W. K., et al. "Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching." Nano letters 8.11 (2008): 3799-3802.
[11] Wagner, R. S., and W. C. Ellis. "Vapor‐liquid‐solid mechanism of single crystal growth." Applied Physics Letters (1964): 89-90.
[12] Schmidt, V., J. V. Wittemann, and U. Gosele. "Growth, thermodynamics, and electrical properties of silicon nanowires†." Chemical reviews 110.1 (2010): 361-388.
[13] Hannon, J. B., et al. "The influence of the surface migration of gold on the growth of silicon nanowires." Nature 440.7080 (2006): 69-71.
[14] Arbiol, Jordi, et al. "Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour–solid–solid mechanism."Nanotechnology 18.30 (2007): 305606.
[15] Wacaser, Brent A., et al. "Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires." Nano letters 9.9 (2009): 3296-3301.
[16] Garnett, Erik C., Wenjie Liang, and Peidong Yang. "Growth and Electrical Characteristics of Platinum‐Nanoparticle‐Catalyzed Silicon Nanowires."Advanced Materials 19.19 (2007): 2946-2950.
[17] Kayes, Brendan M., et al. "Growth of vertically aligned Si wire arrays over large areas (> 1cm2) with Au and Cu catalysts." Applied Physics Letters91.10 (2007): 103110.
[18] Shimizu, Tomohiro, et al. "Synthesis of Vertical High‐Density Epitaxial Si (100) Nanowire Arrays on a Si (100) Substrate Using an Anodic Aluminum Oxide Template." Advanced Materials 19.7 (2007): 917-920.
[19] Zhang, Zhang, et al. "Ordered High‐Density Si [100] Nanowire Arrays Epitaxially Grown by Bottom Imprint Method." Advanced Materials 21.27 (2009): 2824-2828.
[20] Dimova-Malinovska, D., et al. "Preparation of thin porous silicon layers by stain etching." Thin Solid Films 297.1 (1997): 9-12.
[21] Li, X., and P. W. Bohn. "Metal-assisted chemical etching in HF/H 2 O 2 produces porous silicon." Applied Physics Letters 77.16 (2000): 2572-2574.
[22] Peng, Kuiqing, et al. "Motility of metal nanoparticles in silicon and induced anisotropic silicon etching." Advanced Functional Materials 18.19 (2008): 3026-3035.
[23] Huang, Zhipeng, Hui Fang, and Jing Zhu. "Fabrication of silicon nanowire arrays with controlled diameter, length, and density." Advanced materials19.5 (2007): 744-748.
[24] Huang, Zhipeng, et al. "Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching." Nano letters 8.9 (2008): 3046-3051.
[25] Huang, Zhipeng, et al. "Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred< 100> etching directions." Nano letters 9.7 (2009): 2519-2525.
[26] Huang, Zhipeng, et al. "Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon." The Journal of Physical Chemistry C 114.24 (2010): 10683-10690.
[27] Huang, Zhipeng, et al. "Metal‐assisted chemical etching of silicon: a review." Advanced materials 23.2 (2011): 285-308.
[28] Uhlir, A. "Electrolytic shaping of germanium and silicon." Bell System Technical Journal 35.2 (1956): 333-347.
[29] Fuller, C. S., and J. A. Ditzenberger. "Diffusion of donor and acceptor elements in silicon." Journal of Applied Physics 27.5 (1956): 544-553.
[30] Turner, Dennis R. "Electropolishing silicon in hydrofluoric acid solutions."Journal of the electrochemical Society 105.7 (1958): 402-408.
[31] Archer, R. J. "Stain films on silicon." Journal of Physics and Chemistry of Solids 14 (1960): 104-110.
[32] Watanabe, Y., and T. Sakai. "Application of a thick anode film to semiconductor devices." Review of The Electrical Communications Laboratories 19.7-8 (1971): 899.
[33] Watanabe, Y., et al. "Formation and properties of porous silicon and its application." Journal of the Electrochemical Society 122.10 (1975): 1351-1355.
[34] Beale, M. I. J., et al. "An experimental and theoretical study of the formation and microstructure of porous silicon." Journal of Crystal Growth 73.3 (1985): 622-636.
[35] Beale, M. I. J., et al. "Microstructure and formation mechanism of porous silicon." Applied Physics Letters 46.1 (1985): 86-88.
[36] Smith, R. L., S-F. Chuang, and S. D. Collins. "A theoretical model of the formation morphologies of porous silicon." Journal of Electronic Materials17.6 (1988): 533-541.
[37] Smith, R. L., and S. D. Collins. "Generalized model for the diffusion-limited aggregation and Eden models of cluster growth." Physical Review A 39.10 (1989): 5409.
[38] Smith, R. L., and S. D. Collins. "Porous silicon formation mechanisms."Journal of Applied Physics 71.8 (1992): R1-R22.
[39] Witten, TA T., and L. M. Sander. "Diffusion-limited aggregation." Physical Review B 27.9 (1983): 5686.
[40] Read, A. J., et al. "First-principles calculations of the electronic properties of silicon quantum wires." Physical review letters 69.8 (1992): 1232.
[41] Sanders, G. D., and Yia-Chung Chang. "Theory of optical properties of quantum wires in porous silicon." Physical Review B 45.16 (1992): 9202.
[42] Lehmann, V., and Ulrich Gösele. "Porous silicon formation: A quantum wire effect." Applied Physics Letters 58.8 (1991): 856-858.
[43] Smith, Zachary R., Rosemary L. Smith, and Scott D. Collins. "Mechanism of nanowire formation in metal assisted chemical etching." Electrochimica Acta92 (2013): 139-147.
[44] Brock, Stephanie L. "Nanostructures and Nanomaterials: Synthesis, Properties and Applications By Guozhang Cao (University of Washington). Imperial College Press (distributed by World Scientific): London. 2004. xiv+ 434 pp. $78.00. ISBN 1-86094-415-9." Journal of the American Chemical Society 126.44 (2004): 14679-14679.
指導教授 李天錫 審核日期 2015-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明