博碩士論文 102328602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.145.81.98
姓名 林瑤(Yao Lin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 考量氣體分子 吸附性質之 MOCVD垂直反應腔體模擬分析
(Numerical analysis of MOCVD vertical reactor with adsorption theory)
相關論文
★ 發光二極體電極設計與電流分佈模擬分析★ 外加水平式磁場柴氏長晶法生長矽單晶之熱流場數值模擬研究
★ 外加cusp磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析
★ Phosphor Packaging Design of white LED with Optical-Thermal-Electrical Coupling★ 水平式MOCVD腔體中使用氣體脈衝方法生長氮化鋁薄膜之數值模擬與分析
★ 外加Cusp磁場下柴氏法生長單晶矽之不同晶堝轉影響熱流場及氧傳輸數值分析★ 水解二乙基鋅於近耦合噴淋式反對稱腔體 之MOCVD模擬設計分析
★ MOCVD水平式腔體中氮化鎵薄膜製程碳濃度之模擬與傳輸現象分析★ MOCVD 行星式腔體之模型建立與傳輸現象分析
★ 柴氏法生長6~8吋矽單晶之高溫梯爐體與製程設計模擬★ 300mm矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析
★ 以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究★ 二段陽極處理法應用於鈦薄膜成長之研究
★ 交流電發光二極體之接面溫度與熱阻量測研究★ 液滴於具溫度梯度的微流道之數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 氮化鎵(GaN)薄膜材料是目前全世界半導體材料研究的熱點,金屬有機化學氣相沉積法(MOCVD)技術由於具有外延層(epitaxial layer)均勻性較好、材料純度高等優點,為現今LED磊晶產業用於生長氮化鎵的重要製程技術。
本研究利用有限元素分析法(FEM),建立表面吸附之化學反應機制,為使生長速率計算更接近實際製程,同時考慮物種由於質傳與表面反應造成的反應消耗,利用數值模擬,藉由Langmuir熱力學定理計算氣相反應後各物種在晶圓表面上的吸附速率,並以MMG作為主要的吸附物種,主要的反應式共有3條。
首先,利用不同腔體模型建立表面吸附模型,與文獻之實驗結果進行對比驗證,證明本研究之物理模型的準確性,并探討影響表面反應速率的主要參數如溫度(550-1050℃)對薄膜生長速率的影響。接著探討製程參數如TMG/H2氣體流量(25-75 slpm)、載盤轉速(500-1800 rpm) 以及腔體壓力(30-90Torr) 對薄膜生長速率及均勻性的影響。
模擬結果顯示,增加進氣流量使薄膜生長速率變快,但會降低薄均勻性;增加載盤轉速可提高濃度梯度,使薄膜生長速率增加,但高轉速下容易造成載盤中心的濃度堆積;增加腔體腔力可明顯提升薄膜生長速率,使載盤中心與外側的生長速率差異變小,但高壓下,容易造成腔體流場不穩定。
接下來使用考慮實際入口之原始三維腔體模型,對基本幾何參數與入口幾何參數進行設計,結果顯示腔體直徑為177mm,h/D為0.51時, 能夠達到較好的薄膜生長速率及均勻性;增加viewport外環氫氣進氣口能夠有效改善物種在viewport下方的聚集現象,當vH2:vTMG =4時viewport下方的渦流消失。
最後,藉由優化入口幾何設計以得到更佳的均勻性結果,結果顯示圓環形切割slot jet(入口3)能夠增強中心區域的擴散並減少中環區域的物種濃度從而達到更好的均勻性。
摘要(英) GaN is a remarkable semiconductor material in the current investigation. Because of the unique advantages of high purity, good quality, and suitable method for high mass production with a large deposition area, the films are produced by MOCVD. At present, MOCVD technique has been widely applied to manufacture GaN films.
This study uses the FEM method, builds the mechanism of chemical adsorption based on the Langmuir isotherm. After comparing the adsorption rate of the different species, MMG is entered into the major consideration, as the result, the MMG molecule which deposited on the wafer surface is mostly generated by 3 gas reaction processes.
Firstly, the study modifies the temperature variation from 550 to1050℃,makes the comparison with the experimental results, and investigates the effect of varying these manufacturing parameters, such as gas flow rate (25-75 slpm) , rotation rate of wafer carrier (500-1800 rpm), and chamber pressure (30-90 Torr), on the growth rate and film thickness uniformity.
The results indicate that the increase of gas flow rate improves the growth rate of the film but makes deterioration of uniformity. Moreover, enhancing the chamber pressure and wafer carrier rotation rate can accelerate the diffusion speed of specie to get a better growth rate and film thickness uniformity. However, higher speed and higher pressure lead to the instability in the flow field.
After that, we considers the real gas inlets of the 3D model of Veeco D180 chamber, design of the basic geometry and then the study of optimization of the gas inlets was done. The result presents that when the radius is 177mm, ratio of h/D is 0.51, the film thickness uniformity is better. The setting of the hydrogen inlet can effectively improve the species aggregation below the viewport, and the vertical below the viewport will disappear when vH2:vTMG =4.
Finally, the study of optimization of the gas inlets was done. The results shows the inlet design with circle arrangement will enhance the diffusion of gas and also reduce the uniformity of the film.
關鍵字(中) ★ MOCVD
★ 氮化鎵
★ 表面吸附
★ 沉積率
關鍵字(英) ★ Metal Organic Chemical Vapor Deposition
★ Gallium nitirde
★ Surface adsorption
★ Deposition rate
論文目次 摘要 II
Abstract III
致謝 V
目錄 VI
圖目錄 X
表目錄 XV
符號說明 XVI
第一章 緒論 1
1-1 研究背景 1
1-2 MOCVD化學薄膜沉積過程 2
1-2-1 氣相反應過程 2
1-2-2 吸附過程 2
1-2-3 表面沉積過程 3
1-3 MOCVD系統組成 4
1-4 文獻回顧 6
1-5 研究動機與目的 10
第二章 研究方法 20
2-1 數學模型 20
2-1-1 物理系統 20
2-1-2 基本假設 20
2-1-3 統御方程式 21
2-1-4 邊界條件 22
2-2化學反應方程與速率 23
2-2-1 化學反應速率 23
2-2-2 化學反應路徑 24
2-3 無因次參數 27
2-4 混合氣體物理特性 29
2-5 表面化學計算方法 31
2-5-1 表面碰撞原理(Collision Theory) 31
2-5-2 Langmuir熱力學定理 31
2-5-3 吸附速率(The rate of adsorption) 32
2-6 薄膜長速與沉積速率 33
2-7 COMSOL Multiphysics 34
第三章 數值方法 39
3-1 有限元素法(finite element method) 39
3-2 網格配置 39
3-3 收斂性測試 40
第四章 結果與討論 43
4-1氣體分子表面吸附模型驗證 43
4-1-1 溫度對表面吸附速率之影響 43
4-1-2 表面吸附模型對比驗證 44
4-2 基本製程參數與反應式簡化探討 46
4-2-1 進氣流量之影響 46
4-2-2 載盤轉速之影響 47
4-2-3 腔體壓力之影響 47
4-2-4 不同反應式對薄膜生長速率之影響 48
4-3 腔體幾何參數之探討 49
4-3-1 高寬比(h/D)對流場與均勻度之影響 50
4-3-2 入口對應範圍對流場之影響 51
4-4 入口幾何參數設計與探討 51
4-4-1 增加viewport進氣口之影響 52
4-4-2 入口分佈排列之影響 53
4-4-3 外環進氣設計之影響 54
第五章 結論與未來研究方向 86
5-1 結論 86
5-2 未來研究方向 87
參考文獻 88
參考文獻 [1] S. Kobayashi, S. Nonomura, T. Ohmori, K. Abe, S. Hirata, T. Uno, et al., "Optical and electrical properties of amorphous and microcrystalline GaN films and their application to transparent TFT," Applied Surface Science, vol. 113–114, pp. 480-484, 1997.
[2] J. I. Pankove, "GaN: from fundamentals to applications," Materials Science and Engineering: B, vol. 61–62, pp. 305-309, 1999.
[3] S. J. Pearton, F. Ren, A. P. Zhang, G. Dang, X. A. Cao, K. P. Lee, et al., "GaN electronics for high power, high temperature applications," Materials Science and Engineering: B, vol. 82, pp. 227-231, 2001.
[4] 羅文雄, "半導體製造技術," 滄海圖書資訊股份有限公司, 2011.
[5] E. M. McCash, "Surface chemistry," 2001.
[6] 莊達人, "VLSI 製造技術," 高立圖書有限公司, 1996.
[7] Wikipedia, "Metalorganic Vapor Phase Epitaxy," http://en.wikipedia.org/wiki/Metalorganic_vapour_phase_epitaxy, 2015.
[8] M. Dauelsberg, E. J. Thrush, B. Schineller, and J. Kaeppeler, "Chapter 4 - Technology of MOVPE Production Tools," in Optoelectronic Devices: III Nitrides, M. R. Henini, Ed., ed Oxford: Elsevier, 2005, pp. 39-68.
[9] B. Mitrovic, A. Gurary, and L. Kadinski, "On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters," Journal of Crystal Growth, vol. 287, pp. 656-663, 2006.
[10] A. Lobanova, K. Mazaev, E. Yakovlev, R. Talalaev, A. Galyukov, Y. Makarov, et al., "Parametric studies of III-nitride MOVPE in commercial vertical high-speed rotating disk reactors," Journal of Crystal Growth, vol. 266, pp. 354-362, 2004.
[11] B. Mitrovic, A. Parekh, J. Ramer, V. Merai, E. A. Armour, L. Kadinski, et al., "Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors," Journal of Crystal Growth, vol. 289, pp. 708-714, 2006.
[12] J.-H. Han and D.-Y. Yoon, "3D CFD for chemical transport profiles in a rotating disk CVD reactor," 3D Research, vol. 1, pp. 26-30, 2011.
[13] J. Meng and Y. Jaluria, "Numerical Simulation of GaN Growth in a MOCVD Process," in ASME 2011 International Mechanical Engineering Congress and Exposition, 2011, pp. 205-212.
[14] Y.-H. Liu, L.-W. Tseng, C.-Y. Huang, K.-L. Lin, and C.-C. Chen, "Particle image velocimetry measurement of jet impingement in a cylindrical chamber with a heated rotating disk," International Journal of Heat and Mass Transfer, vol. 65, pp. 339-347, 2013.
[15] C. H. Chen, H. Liu, D. Steigerwald, W. Imler, C. P. Kuo, M. G. Craford, et al., "A study of parasitic reactions between NH3 and TMGa or TMAI," Journal of Electronic Materials, vol. 25, pp. 1004-1008, 1996.
[16] S. A. Safvi, J. M. Redwing, M. A. Tischler, and T. F. Kuech, "GaN Growth by Metallorganic Vapor Phase Epitaxy: A Comparison of Modeling and Experimental Measurements," Journal of The Electrochemical Society, vol. 144, pp. 1789-1796,1997.
[17] R. P. Parikh, R. A. Adomaitis, M. E. Aumer, D. P. Partlow, D. B. Thomson, and G. W. Rubloff, "Validating gallium nitride growth kinetics using a precursor delivery showerhead as a novel chemical reactor," Journal of Crystal Growth, vol. 296, pp. 15-26, 2006.
[18] D. Cai, W. J. Mecouch, L. L. Zheng, H. Zhang, and Z. Sitar, "Thermodynamic and kinetic study of transport and reaction phenomena in gallium nitride epitaxy growth," International Journal of Heat and Mass Transfer, vol. 51, pp. 1264-1280, 2008.
[19] J. Sun, J. M. Redwing, and T. F. Kuech, "Transport and Reaction Behaviors of Precursors during Metalorganic Vapor Phase Epitaxy of Gallium Nitride," physica status solidi (a), vol. 176, pp. 693-698, 1999.
[20] C. Theodoropoulos, T. J. Mountziaris, H. K. Moffat, and J. Han, "Design of gas inlets for the growth of gallium nitride by metalorganic vapor phase epitaxy," Journal of Crystal Growth, vol. 217, pp. 65-81, 2000.
[21] D. Sengupta, S. Mazumder, W. Kuykendall, and S. A. Lowry, "Combined ab initio quantum chemistry and computational fluid dynamics calculations for prediction of gallium nitride growth," Journal of Crystal Growth, vol. 279, pp. 369-382, 2005.
[22] R. Zuo, H. Yu, N. Xu, and X. He, "Influence of Gas Mixing and Heating on Gas-Phase Reactions in GaN MOCVD Growth," ECS Journal of Solid State Science and Technology, vol. 1, pp. P46-P53, 2012.
[23] B. Mitrovic, A. Gurary, and W. Quinn, "Process conditions optimization for the maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CFD modeling," Journal of Crystal Growth, vol. 303, pp. 323-329, 2007.
[24] 吳家寧, "MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析," 國立中央大學, 2014.
[25] M. G. Jacko and S. J. W. Price, "THE PYROLYSIS OF TRIMETHYL GALLIUM," Canadian Journal of Chemistry, vol. 41, pp. 1560-1567, 1963.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2015-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明