博碩士論文 102328603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.94.21.209
姓名 蘇邁亞(Praveena Alangar Subrahmanya)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 梯形流道表面之池沸騰熱傳性能研究
(Pool boiling on open trapezoidal channel surface)
相關論文
★ 不同集管型式多流道熱交換器流動分佈研究★ 冷媒R-245fa於不同石墨烯塗佈鰭管上凝結熱傳性能之實驗分析
★ 吸附式空調系統之微鰭板蒸發/冷凝器凝結熱傳增強性能研究★ 平板震盪型熱管均熱片研究
★ 薄矽膠層吸附床之性能研究★ 小型吸附式空調系統研究
★ 變頻空調機在不同環境下之控制策略★ 水-空氣在板式熱交換器內的流動觀察
★ 以紅外線熱像分析冷媒R410A在板式熱交換器內之蒸發熱傳性能★ 不同粒徑微多孔表面在狹小空間內之池沸騰熱傳性能研究
★ 石墨烯塗佈銅管外凝結熱傳性能研究★ 超臨界R-410A與R-32熱傳及壓降性能之研究
★ 製冷劑R-245fa在石墨烯塗層中的冷凝傳熱整體翅片管★ 不同性能風扇對熱傳增強鰭片之性能研究
★ 使用FAM Z05沸石對水之小型吸附式空調性能研究★ 多種冷媒應用在液化天然氣之中間流體式蒸發器之熱傳分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用壓力為一大氣壓下的甲醇為工作流體,並以開放梯型流道為池沸騰熱傳表面進行池沸騰熱傳實驗。沸騰表面流道之參數有深度與鰭片間距兩種。深度分別為0.1mm、0.3mm、 0.6mm與0.9mm,且各深度另有三種不同的鰭片間距。沸騰表面之流道皆使用放電加工製作。並與平滑板之實驗結果做比較。本研究使用兩種不同方法製作平滑板,一種使用砂紙研磨表面,另一種則使用放電加工製作。
藉由量測可知,使用放電加工製作的平滑板表面粗度大於使用砂紙研磨之平滑板。而由實驗結果可得,在不同熱通量下,以放電加工製作之平滑板為沸騰表面皆有較佳之熱傳性能。在所有沸騰表面中,因流道表面之粗糙度較大,成核孔洞相對較多,因此汽泡皆由流道表面產生。若流道深度增加,藉由汽泡之觀察可發現兩種獨特的氣泡流動方式明顯改變了熱傳機制。以流道深度為0.1mm為沸騰表面時,流道只產生單一汽泡,因此熱傳性能與流道數成直接正比之關係。以0.3mm到0.9mm之深度為沸騰表面時,成核孔洞則隨深度增加而增多。若降低鰭片間距並增加流道深度,成核孔洞數目相對增加。因此,增加沸騰表面積為一提高熱傳性能之重要參數。另外,若增加流道深度,流道所產生之汽泡體積較大,使的液體補充回流道時流速較快,有助於單相流體之對流流動。因此,將液、汽之流動路徑分離,有助於延後臨界熱通量的發生。

關鍵字: 流道表面,表面粗糙度,沸騰熱傳增強,碰撞流動,汽泡流動,臨界熱通量
摘要(英) In this thesis pool boiling experiment is carried out on open trapezoidal channel surface to study the effect of channel top width (0.4mm, 0.8mm, 1.4mm and 2.0mm) and fin pitch using saturated methanol as working fluid at one atmospheric pressure along with bubble dynamic visualisation. The channel were cut using wire electro-discharge machining technique and results are compared with corresponding plane surfaces.
Plain boiling surface with comparatively high roughness value (manufactured by wire electro-discharge machining) consistently showed higher heat transfer performance than emery surface with lower roughness value. All channel surfaces performed better than plain surface prepared by emery paper. For all the tested trapezoidal channel surfaces, bubbles only generated from the channel surface because of high roughness on channel surface. There was no bubble generation from fin top surface. Therefore overall channel surface area played major role along with the effect of channel geometry on HTC & CHF and the results are meant to compare with plain surface made by EDM process.
Two distinctive bubble dynamics are observed as the channel top width increased. For channel having top width 0.4mm, single bubble generated across the channel and it attached to channel side surface and grew on top of channel till the departure. Therefore the heat transfer performance increased as the fin pitch reduced. But in comparison with Plain EDM surface, its nucleate boiling HTC found to be lower because overall available boiling surface area (ie channel surface area) is lower.
From channel having top width 0.8mm to 2.0mm, number of nucleation sites across channel surface increased accordingly with the channel cross section area. Therefore multiple bubble nucleation sites were observed. On these channel top width surfaces, a heat transfer enhancement mechanism observed. Therefore even though the channel surface area was lower than that of plain EDM surface, nucleate boiling HTC were either equal or more than plain EDM surface observed. Reduction in fin pitch had no major effect on HTC.
For channel made by EDM process having different roughness value in comparison with fin top surface has different liquid and vapor flow path ways. Majority of the liquid supply to rewet the boiling surface (i.e channel surface) were from fin top surface. As the fin pitch decreases, CHF found to increase for all tested channel top widths because of increases in channel surface area as well as enhancement in heat transfer mechanism over channel surface.
關鍵字(中) ★ 流道表面
★ 表面粗糙度
★ 沸騰熱傳增強
★ 碰撞流動
★ 汽泡流動
★ 臨界熱通量
關鍵字(英) ★ Channel surface
★ roughness
★ heat transfer enhancement
★ bubble dynamics
★ CHF
論文目次 摘要…………………………………………………………………………………………… I
Abstract..……………….……………………………………………………………………...II
Contents……….……………………………………………………………………………..IV
List of Tables….……………………………………………………………………………..VI
List of Figures….……………………………………………………………………………VII
Nomenclature……………………………………………………………………….……...VIII
1. Introduction…………………………………………………………………………………1
1. 1 Introduction to thermal management system …………………………………………….1
1.2 Two phase thermal management system…………………………………………………..2
2. Literature review……………………………………………………………………………4
2.1 Pool boiling………………………………………………………………………………..4
2.2 Nucleate boiling heat flux correlations…………………………………………………....7
2.3 Pool boiling on microchannel, tunnel and hierarchical structures………………………...8
2.4 Purpose of research work and scope of present work………………………...………… 15
3. Experimental Methods…………………………………………………………………….16
3.1 Natural circulation loop system…………………………………………………………..16
3.2 Heating system and boiling surface characterisation ……………………………………19
3.3 Data acquisition system…………………………………………………………………..33
3.3.1 Temperature measurement …………………………………………………………….33
3.3.2 Pressure measurement………………………………………………………………….33
3.4 High speed imaging……………………………………………………………………....33
3.5 Condensing system……………………………………………………………………….34
3.6 Pool liquid filling………………………………………………………………………...34
3.7 Experimental procedure………………………………………………………………….34
3.8 Data reduction……………………………………………………………………………34
4. Results and Discussion…………………………………………………………………….37
4.1 Pool boiling on plain surfaces……………………………………………………………37
4.2 High speed visualisation…………………………………………………………………40
4.3 Pool boiling on channel surface………………………………………………………….44
4.3.1 Analysis of nucleating boiling heat transfer performance based on projection and actual boiling surface area…………………………………………………………………………..44
4.3.2 Effect of fin pitch on nucleate boiling performance……………………………………47
4.3.3 Effect of fin pitch at constant channel depth on CHF and effect of channel depth at constant fin top width on CHF……………………………………………………………….52
5. Conclusions………………………………………………………………………………..53
6. References………………………………………………………………………………....54
Appendix A…………………………………………………………………………………..57
Appendix B…………………………………………………………………………………..59
Appendix C…………………………………………………………………………………..60
參考文獻 [1] Price, D.C., A Review of Selected Thermal Management Solutions for Military Electronic Systems, IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 1, 14 pages, March, 2003
[2] Ebadian, M.A., Lin, C.X., A Review of High Heat Flux Heat Removal Technologies, Journal of Heat Transfer, Vol. 133(11), 110801, 11 pages, November, 2011
[3] Mudawar, I., Assessment of High-Heat-Flux Thermal Management Schemes, IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 2, June, pp. 122-141, 2001
[4] Agostini, B., Fabbri, M., Park, J.E., Wojtan, L., Thome, J.R., Michel, B., State of the Art of High Heat Flux Cooling Technologies, Heat Transfer Engineering, Vol.28(4), pp. 258–281, 2007
[5] Nakayama, W., Max Jakob Award Paper—Heat in Computers: Applied Heat Transfer in Information Technology, Journal of Heat Transfer, Vol. 136(1), 013001, 22 pages, January, 2014
[6] Collier, J.G., Thome, J.R., Convective Boiling and Condensation, 3rd edition, Clarendon Press , Oxford, 1994
[7] Garimella, S.V., Fleischer, A.S., Murthy, J.Y., Keshavarzi, A., Prasher, R., Patel, C., Bhavnani, S.H., Venkatasubramanian, R., Mahajan, R., Joshi, Y., Sammakia, B., Myers, B.A., Chorosinski, L., Baelmans, M., Sathyamurthy, P., Raad, P.E., Thermal Challenges in Next Generation Electronic Systems, IEEE Transactions on Components and Packaging Technologies, Vol. 31, No. 4, December, pp. 801-815, 2008
[8] Rohsenow, W. M., A method of correlating heat transfer data for surface boiling of liquids, Transactions of ASME, Vol. 74, pp.969-976, 1952
[9] Stephen, K., Abdelsalam, M., Heat transfer correlations for natural convection boiling, Int. J. Heat Mass Transfer, Vol.23 (1), pp.73-87, 1980
[10] Fritz, W., Berechnung des Maximal Volume von Dampfblasen, Phys. Z., Vol.36, pp.379-388, 1935
[11] Cooper, M. G., Heat flow rates in saturated nucleate pool boiling-a wide ranging examination using reduced properties, Advances in Heat Transfer, Academic Press, Orlando, Vol.16, pp.157-239, 1984
[12] Kandlikar, S.G., Grande, W.J., Evolution of microchannel flow passages-Thermohydraulic performance and fabrication technology, Proceedings of IMECE2002, ASME International Mechanical Engineering Congress & Exposition, New Orleans, Louisiana, November 17-22, 13 pages, 2002
[13] Das, A.K., Das, P.K., Saha, P., Performance of different structured surfaces in nucleate pool boiling, Applied Thermal Engineering, Vol.29, pp.3643–3653, 2009
[14] Das, A.K., Das, P.K., Saha, P., Some investigations on the enhancement of boiling heat transfer from planer surface embedded with continuous open tunnels, Experimental Thermal and Fluid Science, Vol.34, pp.1422–1431, 2010
[15] Kalani, A., Kandlikar, S.G., Pool boiling of FC-87 over microchannel surfaces at atmospheric pressure, Proceedings of the ASME, 10th International Mechanical Engineering Congress & Exposition, 7 pages, 2012
[16] Cooke, D., Kandlikar, S.G., Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels, Journal of Heat Transfer, Vol. 133(5), 052902, 9 pages, May, 2011
[17] Cooke, D., Kandlikar, S.G., Effect of open microchannel geometry on pool boiling enhancement, International Journal of Heat and Mass Transfer, Vol.55, pp.1004–1013, 2012
[18] Kalani, A., Kandlikar, S.G., Pool boiling heat transfer over microchannel surfaces with ethanol at atmospheric pressure, Proceedings of the ASME, 10th International Conference on Nanochannels, Microchannels, and Minichannels, 7 pages, 2012
[19] Kandlikar, S.G., Controlling bubble motion over heated surface through evaporation momentum force to enhance pool boiling heat transfer, Applied Physics Letters, Vol.102, No.2, 051611, 7 pages, 2013
[20] Kapsenberg, F., Strid, L., Thiagarajan, N., Narayanan, V., Bhavnani, S. H., On the lateral fluid motion during pool boiling via preferentially located cavities, Applied Physics Letters, Vol.104, Issue 15, 154105, 5 pages, 2014
[21] Ramaswamy, C., Joshi, Y., Nakayama, W., Johnson, W., High-speed visualization of boiling from an enhanced structure, Int. J. Heat Mass Transfer, vol.45, pp.4761–4771, 2002
[22] Launay, S., Fedorov, A.G., Joshi, Y., Cao, A., Ajayan, P.M., Hybrid micro-nano Structured thermal interfaces for pool boiling heat transfer enhancement, Microelectron. J. vol.37, pp.1158–1164, 2006
[23] Yao, Z., Lu, Y.W., Kandlikar, S.G., Pool Boiling Heat Transfer Enhancement Through Nanostructures on Silicon Microchannels, Journal of Nanotechnology in Engineering and Medicine, Vol. 3(3), 8 pages, 031002, August, 2012
[24] Patil, C.M., Kandlikar, S.G., Pool boiling enhancement through microporous coatings selectively electrodeposited on fin tops of open microchannels, International Journal of Heat and Mass Transfer, Vol.79, pp.816–828, 2014
[25] Jones, B.J., McHale, J.P., Garimella, S.V., The influence of surface roughness on nucleate pool boiling heat transfer, Journal of Heat Transfer, Vol. 131, 14 pages, December 2009.
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2015-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明