博碩士論文 102329005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.238.184.78
姓名 黃俞碩(Yu-Shuo Huang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 合成質子傳導型電解質與奈米纖維陽極 功能層於H+-SOFC之應用研究
(Synthesis and Characterization of Proton-conducting Electrolytes and Nano-fiber Anode Functional Layer for H+-SOFC Applications)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 氫離子佈植對矽鍺/矽異質結構應變釋放之研究及矽鍺奈米線之製作★ 利用原子力顯微鏡結合選擇性化學蝕刻法分析自組裝矽鍺量子點成分分佈之研究
★ 利用新穎奈米遮罩製備低維度矽鍺奈米結構及其光電性質之研究★ 利用奈米球微影術與金輔助化學蝕刻法形成矽鍺奈米柱陣列之研究
★ 第三元素對於鎳矽化物形成於矽及矽碳基板之影響★ 應用於太陽光電之自潔性及低反射率之矽與矽鍺奈米孔洞陣列
★ 奈米結構化氧化鋁鋅薄膜之製作與光電性質研究★ 鉑矽化物於矽碳磊晶層上生成行為及其熱穩定性之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 態氧化物燃料電池電解質材料之化學穩定性、燒結緻密性、相均勻性以及離子傳導性,本實驗利用溶膠-凝膠製備以BaCe0.8Y0.2O3-δ為基礎之電解質材料,此氧化物在中溫(600-800℃)範圍內具有穩定之質子傳導性,但由於此材料之高溫化學穩定性及燒結緻密性不佳,因此必須添加Sr及Zr來抑制生成不純相,為了增進燒結緻密性,故本研究利用成分交換法均勻混合Ba1Ce0.8Y0.2O3-δ及Ba0.6Sr0.4Ce0.4Zr0.4Y0.2O3-δ,於1600℃下燒結4小時,使成分均勻擴散形成單相Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δ,並觀察其顯微結構以及利用拉曼圖譜分析此材料於高溫CO2環境下之化學穩定性,並作成單電池Pt /電解質/ Pt測量電解質之電導率及電池能量密度。之後以陽極支撐的方式製作電池,將電解質減薄至50 μm以下,縮短質子傳遞路徑,另外加入陽極功能層(functional layer) SrCe0.8Y0.2O3-δ奈米纖維結構來達到增加陽極與電解質間之表面積,以利燃料催化得更完全,進而提升電池電化學表現及能量密度。
摘要(英) This study reports the synthesis of proton-conducting Ba1-xSrxCe0.8-xZrxY0.2O3-δ (x =0, 0.2, 0.4) ceramics by using a combination of citrate-EDTA complexing sol-gel process and the composition-exchange method. Compared to the sintered oxides of similar composition prepared from conventional sol-gel powders,Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δoxides synthesized by sol-gel combined with the composition-exchange method are found to exhibit improved sinterability, higher conductivity, more homogeneous phase. Among all sintered oxides in this study, the Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δpellet fabricated by this new method has the highest conductivity, 0.017 S/cm at 800℃, which is higher than those pressed from conventional sol-gel powders. Based on the experimental results, we discuss the mechanism for improvement in these properties in terms of calcined particle characteristics. This work demonstrates thatBa0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δoxides synthesized by sol-gel combined with the composition-exchange method would be a promising electrolyte for H+-SOFC applications.

A SrCe0.8Y0.2O3-δ-NiO anode functional layer was added between the Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δelectrolyte and the Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δ-NiO anode substrate to investigate its effect on the performance of single cells. Anode-supported electrolyte fuel cells were fabricated and tested. The single cell without SrCe0.8Y0.2O3-δ-NiO anode functional layer generated maximum power densities of 201.08 mWcm−2 at 800 °C. Electrochemical impedance spectroscopy (EIS) measurements for three cells revealed that the addition of the anode functional layer reduced the contact resistance as well as the polarization resistance for the cell, resulting thus in the improved cell performance.

關鍵字(中) ★ 溶膠-凝膠法
★ 固態氧化物燃料電池
★ 電解質
★ 奈米纖維
★ 陽極功能層
關鍵字(英) ★ Sol-gel
★ SOFC
★ proton-conducting
★ electrolyte
★ nanofiber
★ anode functional layer
論文目次 摘要…………………………………………..…………....i

Abstract………………………………………..………....ii

致謝.......................................... iv

目錄……………………………………………..………...v

圖目錄………………………………………….…...…....ix

表目錄…...………………………………………….........xi

第一章 緒論 ………..1

1.1燃料電池之簡介 1

1.2固態氧化物燃料電池(SOFC) 1

1.2.1 SOFC之原理 1

1.2.2 SOFC之優點 4

1.2.3 SOFC之結構 4

1.2.4 SOFC電解質材料製備方式 6

1.3 SOFC電解質材料 7

1.3.1螢石(Fluorite)結構 7

1.3.2鈣鈦礦(Perovskite)結構及性質 8

1.3.3質子傳輸機制 9

第二章 實驗方法 11

2.1 實驗藥品 11

2.2 BaCO3-based 粉末製備 12

2.3 成分交換法(composition-exchange method) 13

2.4 BaCO3-based 粉末乾壓 13

2.5 材料分析 13

2.5.1 X-ray繞射(X-ray Diffraction) 13

2.5.2 掃描式電子顯微鏡(Scanning Electron Microscopy) 14

2.5.3拉曼光譜分析(Raman Spectrometer Analysis) 14

2.6 電性分析 15

2.7 化學穩定性 15

2.8 電解質能量密度測量 16

2.9 靜電紡絲技術(Nanofiber Electrospinning Unit) 16

2.10電化學阻抗頻譜法(EIS) 18

2.10.1EIS之簡介 18

2.10.2等效電路之簡介 20













第三章 合成質子傳輸型電解質材料.............................23

3.1 研究動機 23

3.2 實驗步驟 25

3.2.1BaCeO3-based 電解質材料製備 25

3.2.2成分交換法製備Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δ 25

3.3 結果與討論 26

3.3.1形貌與結構分析 26

3.3.2化學熱穩定性分析 28

3.3.3拉曼圖譜分析 30

3.3.4電導率測量 32

3.3.5能量密度測量 33

3.4 結論 35

第四章 奈米纖維陽極功能層於H+-SOFC之應用.....36

4.1 研究動機 36

4.2 實驗步驟 37

4.2.1製備SrCe0.8Y0.2O3-δ奈米纖維 37

4.2.2電解質刮刀成型 37

4.2.3陽極刮刀成型 38

4.2.4疊壓-共燒 38

4.3 結果與討論 39

4.3.1奈米纖維結構之形貌 39

4.3.2陽極支撐型H+-SOFC製作 43

4.3.3陽極支撐型H+-SOFC之燒結 44

4.3.4陽極支撐型H+-SOFC與陽極功能層 46

4.3.5陽極支撐型H+-SOFC之電性量測 49

4.3.6陽極支撐型H+-SOFC之EIS測量 51

4.4 結論 52

第五章 未來展望………………………………………53

參考文獻………………………………………………..54

參考文獻 [1.1]W.R. Grove, “Onvoltaicseriesandthecombinationofgases byplatinum”, PhilosophicalMagazineSeries 3, 14 (1839) pp. 127-130.

[1.2] M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, E. D. Bartolomeo, “Influence of the ratio between Ni and BaCe0.9Y0.1O3−δon microstructural andelectrical properties of proton conducting Ni–BaCe0.9Y0.1O3−δanodes”, Journal of Alloys and Compounds, 509 (2011) pp. 1157–1162.

[1.3]B. H. Rainwater, M.F. Liu, M.L. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, Journal of Hydrogen Energy, 37 (2012) pp. 18342-18348.

[1.4] T. Suzuki, S. Sugihara, T. Yamaguchi, H. Sumi, K. Hamamoto, Y. Fujishiro, “Effect of anode functional layer on energy efficiency of solid oxide fuel cells”, Electrochemistry Communications, 13(2011) pp. 959-962.

[1.5] L. Bi, S.Q. Zhang, S.M. Fang, Z.T. Tao, R.R. Peng, W. Liu, “A novel anode supported BaCe0.7Ta0.1Y0.2O3−δelectrolyte membrane for proton-conducting solid oxide fuel cell”, Electrochemistry Communications, 10 (2008) pp. 1598-1601.

[1.6] H. Moon, S. D. Kim, E. W. Park, S. H. Hyun, H. S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen Energy, 33 (2008) pp. 2826-2833.

[1.7] Z.H. Chen, R. Rana, W. Zhou, Z.P. Shao, S.M. Liu, ” Assessment of Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.0–1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane”, Electrochimica Acta, 52 (2007) pp. 7343-7351.

[1.8] C.A.J. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, K. Yabuta, “Oxide ion diffusion in perovskite-structured Ba1−xSrxCo1−yFeyO2.5:A molecular dynamics study”, Solid State Ionics, 177 (2007) pp. 3425–3431.

[1.9] W. Zhou, R. Ran, Z.P. Shao, R. Cai, W.Q. Jin, N.P. Xu, J.M. Ahn, ” Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathodes prepared via electroless deposition”, Electrochimica Acta, 53 (2008) pp. 4370-4380.

[1.10] B. Wei, Z. Lü, X.Q. Huang, J.P. Miao, X.Q. Sha, X.S. Xin, W.H. Su, “Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1−xCo0.8Fe0.2O3−δ (0.3 ≤ x ≤ 0.7)”, Journal of the European Ceramic Society, 26 (2006) 2827-2832.

[1.11] Y. Lin, R. Ran, Y. Zheng, Z.P. Shao, W.Q. Jin, N.P. Xu, J.M. Ahn, “Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell”, Journal of Power Sources, 180 (2008) pp. 15–22.

[1.12] W. Zhou, R. Ran, R. Cai, Z.P. Shao, W.Q. Jin, N.P. Xu, “Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3−δ electrode prepared by electroless deposition technique”, Journal of Power Sources, 186 (2009) pp. 244–251.

[1.13] Z.J. Yang, W.B. Wang, J. Xiao, H.M. Zhang, F. Zhang, G.L. Ma, Z.F. Zhou, “A novel cobalt-free Ba0.5Sr0.5Fe0.9Mo0.1O3−δ–BaZr0.1Ce0.7Y0.2O3−αcomposite cathode for solid oxide fuel cells”, Journal of Power Sources, 204 (2012) pp. 89–93.

[1.14] B. Lin, H.P. Ding, Y.C. Dong, S.L. Wang, X.Z. Zhang, D.R. Fang, G.Y. Meng, “Intermediate-to-low temperature protonic ceramic membrane fuel cells withBa0.5Sr0.5Co0.8Fe0.2O3-δ–BaZr0.1Ce0.7Y0.2O3-δ composite cathode”, Journal of Power Sources, 186 (2009) pp. 58–61.

[1.15] L. Zhao, B.B. He, Y.H. Ling, Z.Q. Xun, R.R. Peng, G.Y. Meng, X.Q. Liu, ” Cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3−δfor proton-conducting solid oxide fuel cell cathode”, International Journal of Hydrogen Energy, 35 (2010) pp. 3769–3774.

[1.16] W.J. Zheng, C. Liu, Y. Yue, W.Q. Pang, “Hydrothermal synthesis and characterization of BaZr1-xMxO3-α (M = Al, Ga, In, x≦0.20) series oxides ”, Materials Letters, 30 (1997) pp. 93-97.

[1.17]K. Katahira , Y. Kohchi, T. Shimura, H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, 138 (2000) pp. 91–98.

[1.18]K.H. Ryu, S.M. Haile, ” Chemical stability and proton conductivity of doped BaCeO3 -BaZrO3 solid solutions”, Solid State Ionics, 125 (1999) pp. 355–367.

[1.19] Rinlee Butch Cervera , Y. Oyama, S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3 − δ by sol–gel method”, Solid State Ionics,178 (2007) pp. 569–574.

[1.20] Y.M. Guo, Y. Lin, R. Ran, Z.P. Shao, ” Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3−δ (0.0 ≤ y ≤ 0.8) for fuel cell applications”, Journal of Power Sources, 193 (2009) pp. 400–407.

[1.21] H. Inaba, H. Tagawa, ” Ceria-based solid electrolytes”, Solid State Ionics, 83 (1996) pp. 1- 16.

[1.22] M. Johnsson, P. Lemmens, “Crystallography and Chemistry of Per-ovskites,” Handbook of Magnetism and Advanced Magnetic Media,pp. 2098–106.

[1.23] X.C. Liu, R.Z. Hong, C.S. Tian, “Tolerance factor and the stability discussion of ABO3-type ilmenite”, J Mater Sci : Mater Electron, 20 (2009) pp. 323–327.

[1.24] E. Traversa, E.Fabbri, formerly National Institute for Material Science, Japan.

[1.25] N. Agmon, “The Grotthuss mechanism”, Chemical Physics Letters, 244 (1995) pp. 456-462.

[1.26] M. Saiful Islam, “Ionic transport in ABO3 perovskite oxides: a computermodelling tour”, J. Mater. Chem., 10 (2000) pp. 1027-1038.

[1.27] K.D. Kreuer, ” Proton Conductivity: Materials and Applications”, Chem. Mater. 8 (1996) pp. 610-641.



[2.1] D. Li, Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?”, Advances materials, 16 (2004) pp.1151-1170.

[3.1] E. Perry Murray, T. Tsai, S. A. Barnett, “A direct-methane fuel cell with a ceria-based anode“, Nature, 400 (1999) pp. 649-651.

[3.2] S.H. Chan, H.K. Ho, Y. Tian, ”Multi-level modeling of SOFC–gas turbine hybrid system”, International Journal of Hydrogen Energy, 28 (2003) pp. 889 – 900.

[3.3] S. M. Haile, “Fuel cell materials and components”, Acta Materialia, 51 (2003) pp. 5981–6000.

[3.4] K. Xie, R.Q. Yan, X.Q. Liu, “Stable BaCe0.7Ti0.1Y0.2O3−δproton conductor for solid oxide fuel cells”, Journal of Alloys and Compounds, 479 (2009) pp. L40–L42.

[3.5] I.M. Hung, H.W. Peng, S.L. Zheng, C.P. Lin, J.S. Wu, “Phase stability and conductivity of Ba1−ySryCe1−xYxO3−δsolid oxide fuel cell electrolyte”, Journal of Power Sources, 193 (2009) pp. 155–159.

[3.6]Z.P. Shao, S. M. Haile, ” A high-performance cathode for the next generation of solid-oxide fuel cells”, Nature, 431 (2004) pp. 170-173.

[3.7]L. Yang, C.D. Zuo, S.H. Wang, Z. Cheng, and M. Liu, ” A Novel Composite Cathode for Low-Temperature SOFCs Based on Oxide Proton Conductors”, advanced material, 20 (2008) pp. 3280–3283.

[3.8] W.Y. Tan, Q. Zhong, M.S. Miao, H.X. Qu, ” H2S Solid oxide fuel cell based on a modified Barium cerate perovskite proton conductor”, Ionics , 15 (2009) pp. 385–388.

[3.9]Y. Lin, R. Ran, Y. Zheng, Z.P. Shao, W.Q. Jin, N.P. Xu, J.M. Ahn,” Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δas a Potential Cathode for an Anode-supported Proton-conducting Solid-oxide Fuel Cell”, Journal of Power Sources, 180 (2008) pp. 15–22.

[3.10]H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, ”Proton Conduction in Sintered Oxides Based on BaCe03“, Journal of Electrochemical Society, 135 (1988) pp. 529–533.

[3.11] H. Iwahara, ”Technological Challenges in the Application of Proton Conducting Ceramics”, Solid State Ionics, 77 ( 1995) pp. 289–298.

[3.12]H.G. Gu, R. Ran, W. Zhou, Z.P. Shao, ”Anode-supported ScSZ-electrolyte SOFC with whole cell materials from combined EDTA–citrate complexing synthesis process”, Journal of Power Sources, 172 (2007) pp. 704–712.

[3.13] Y.M. Guo, Y. Lin, R. Ran, Z.P. Shao, ” Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ(0.0 ≤ y ≤ 0.8) for fuel cell applications”, Journal of Power Sources, 193 (2009) pp. 400–407.

[3.14] R.S. Gemmen, J. Trembly, “On the mechanisms and behavior of coal syngas transport and reaction within the anode of a solid oxide fuel cell”, Journal of Power Sources, 161 (2006) pp. 1084–1095.

[3.15] Z. Zhong, ”Stability and conductivity study of the BaCe0.9−xZrxY0.1O2.95 systems”, Solid State Ionics, 178 (2007) pp. 213–220.

[3.16] M.Y. Gong, X. Liu, J. Trembly, C. Johnson, “Sulfur-tolerant anode materials for solid oxide fuel cell application”, Journal of Power Sources, 168 (2007) pp. 289–298.

[3.17] P. Babilo, T. Uda, S.M. Haile, “Processing of Yttrium-doped Barium Zirconate for High Proton Conductivity”, Materials Research Society, 22 (2007) pp. 1322-1330.

[3.18] J.D. Lu, L. Wang, L.H. Fan, Y.H. Li, L. Dai, H.X. Guo, ” Chemical stability of doped BaCeO3-BaZrO3 solid solutions in different atmospheres”, Journal Of Rare Earths, 26 (2008) pp. 505–510.

[3.19] Y.Z. Zeng, P.L. Mao, S.P. Jiang, P. Wu, L. Zhang, P. Wu, ” Prediction of Oxygen Ion Conduction from Relative Coulomb Electronic Interactions in Oxyapatites”, Journal of Power Sources, 196 (2011) pp. 4524–4532.

[3.20] C.S. Tu, R.R. Chien, V.H. Schmidt, S.C. Lee, C.C. Huang, C.L. Tsai, “Thermal Stability of Ba(Zr0.8−xCexY0.2)O2.9 Ceramics in Carbon Dioxide“, Journal of Applied Physics, 105 (2009) p. 103504.

[3.21] R.R. Chien, C.S. Tu, V.H. Schmidt, S.C. Lee, C.C. Huang, ” Synthesis and characterization of proton-conducting Ba(Zr0.8−xCexY0.2)O2.9 ceramics”, Solid State Ionics, 181 (2010) pp. 1251–1257.

[3.22] R. Q. Long, Y. P. Huang and H. L. Wan, ” Surface Oxygen Species Over Cerium Oxide and Their Reactivities with Methane and Ethane by Means of in situ Confocal Microprobe Raman Spectroscopy”, Journal Of Raman Spectroscopy, 28 (1997) pp. 29–32.

[3.23] M. Aghazadeh, A. Nozad, H. Adelkhani, M. Ghaemi, ” Synthesis of Y2O3 Nanospheres via Heat-Treatment of Cathodically Grown Y(OH)3 in Chloride Medium”, Journal of The Electrochemical Society, 157(2010) pp. D519–D522.

[3.24] H. Iwahara, “Technological challenges in the application of proton conducting ceramics”, Solid State Ionics,77 (1995) pp. 289-298.

[3.25]H. Iwahara, “Proton conduction in sintered oxides based on BaCeO3”, J. Electrochem. Soc., 135 (2) (1988) pp. 529–533.

[3.26]H. Iwahara, “High temperature solid electrolyte fuel cells using perovskite type oxide based on BaCeO3”, J. Electrochem. Soc., 137 (2) (1990) pp. 462–465.

[4.1]E. Zhao, Z. Jia, L. Zhao, Y.P. Xiong, C.W. Sun, M. E. Brito,’’One dimensional La0.8Sr0.2Co0.2Fe0.8O3-δ/Ce0.8Gd0.2O1.9 nanocomposite cathodes for intermediate temperature solid oxide fuel cells”, Journal of Power Sources, 219 (2012) pp. 133–139.

[4.2] L.Q. Fan, Y.P. Xiong, L.b. Liu, Y.W. Wang, H. Kishimoto, K. Yamaji, T. Horita, ” Performance of Gd0.2Ce0.8O1.9 infiltrated La0.2Sr0.8TiO3 nanofiber scaffolds as anodes for solid oxide fuel cells”, Journal of Power Sources, 265 (2014) pp. 125–131.

[4.3] J.G. Lee, M.G. Park, J.H. Park, Y.G. Shul, “Electrochemical characteristicsofelectrospunLa0.6Sr0.4Co0.2Fe0.8O3-δ-Gd0.1Ce0.9O1.95 cathode”, Ceramics International, 40 (2014) pp. 8053–8060.

[4.4] E.Q. Zhao, C. Ma, W. Yang, Y.P. Xiong, J.Q. Li, C.W. Sun, “Electrospinning La0.8Sr0.2Co0.2Fe0.8O3-δ tubes impregnated with Ce0.8Gd0.2O1.9 nanoparticles for an intermediate temperature solid oxide fuel cell cathode”, International Journal of hydrogen energy, 38 (2013) pp. 6821–6829.

[4.5] N.T. Hieua, J. Park, B. Tae, “Synthesis and characterization of nanofiber-structured Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite oxide used as a cathode material for low-temperature solid oxide fuel cells”, Materials Science and Engineering B, 177 (2012) pp. 205– 209.

[4.6]L. Bi, E. Fabbri, E. Traversa, “ Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs)”, Electrochemistry Communications, 16 (2012) pp. 37–40.

[4.7] S.C. He, H.L. Dai, G.F. Cai, H. Chen, L.C. Guo, ” Optimization of La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Sm0.2O1.9 compositionally graded anode functional layer”, Electrochimica Acta, 152 (2015) pp. 155–160.

指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2015-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明