博碩士論文 102329008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.145.115.114
姓名 柯佩汝(Pei-Ju Ko)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 金屬輔助化學蝕刻法製備矽奈米線之熱電性質研究
(Thermoelectric properties of silicon nanowires fabricated using metal-assisted chemical etching)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 矽塊材在室溫下為高熱導率材料,熱導率約為150 W/m-K,導致矽塊材ZT值只有0.01,為不良的熱電材料,降低矽的熱導率才能提升ZT值,因此,一維奈米結構成為熱門的研究。相較於塊材,一維矽奈米線結構表面容積比大,聲子傳遞受到侷限,導致聲子散射,有效降低熱導率。本研究使用低摻雜p-type及重摻雜n-type (100)矽晶片,以金屬輔助化學蝕刻法(Mental-assisted chemical etching)製成單晶粗糙的矽奈米線,直徑約為150-250nm,熱導率明顯下降,經氧電漿蝕刻,低摻雜奈米線電導率電導率會上升。

摘要(英) The thermal conductivity of bulk silicon is 150Wm-1K-1 at room temperature. It is considered as poor thermoelectric material. The ZT is just 0.01 due to its high thermal conductivity. Thus, one dimensional nanostructure has become a good study to solve this problem. Comparing with bulk, there have large surface to volume ratio of one dimension nanostructure. The thermal conductivity reduced by the phonon scattering in the boundary of nanowires. It is helpful to reduce the thermal conductivity. In our study, we use MACE method to fabricate single rough silicon nanowires from lightly doped p-type and heavily doped n-type (100) wafers. The diameter of silicon nanowires are about 150-250nm. The thermal conductivity was decreasing obviously. After oxygen plasma etching, the electric conductivity was increased for lightly doped silicon nanowires.

關鍵字(中) ★ 矽
★ 一微奈米結構
★ 金屬輔助化學蝕刻法
★ 熱電
★ 電漿表面改質
關鍵字(英) ★ silicon
★ one-dimensional nanostructure
★ mental-assisted chemical etching
★ thermoelectric
★ plasma-surface modification
論文目次 摘要 i

Abstract ii

致謝 iii

目錄 v

圖目錄 viii

第一章 文獻回顧 1

1.1矽一維奈米結構特性 1

1.2 矽一維奈米結構合成方法 2

1.2.1 熱蒸鍍法 2

1.2.2 雷射消融法 2

1.2.3 化學氣相沉積法 3

1.2.4 分子束磊晶法 4

1.2.5 超臨界流體-液-固合成法 5

1.3 矽一維奈米結構合成機制 6

1.3.1 氣-液-固成長機制 6

1.3.2 氣-固-固成長機制 7

1.3.3 固-液-固成長機制 8

1.3.4 溶液-液-固成長機制 9

1.3.5 氧化物輔助成長機制 9

1.4 金屬輔助蝕刻法 10

1.4.1一步金屬輔助化學蝕刻法 10

1.4.2 兩步金屬輔助化學蝕刻法 12

1.5 熱電效應及熱電材料 12

1.6 電漿表面改質技術 15

第二章 實驗方法及儀器 18

2.1 實驗流程圖 18

2.2 實驗藥品 19

2.3 實驗儀器 20

2.3.1 顯微拉曼光譜儀 20

2.3.2 掃描式電子顯微鏡 20

2.3.3 穿透式電子顯微鏡 21

2.3.4 雙束型場發射聚焦離子束系統 22

2.3.5 微波電漿源及電源供應器 23

第三章 矽奈米結構之熱電性質探討 25

3.1 研究動機 25

3.2 實驗步驟 27

3.2.1 製備矽奈米線 27

3.2.2 矽奈米線電漿改質製成 30

3.2.3 製備熱電性質量測試片 31

3.2.4 熱電性質量測 32

第四章 實驗結果與討論 35

4.1矽奈米線結構與形貌分析 35

4.1.1金屬輔助化學蝕刻法矽奈米線 35

4.1.2電漿改質矽奈米線 41

4.2熱電性質分析 47

4.3 結論 52

第五章 未來展望 53

參考文獻 54

參考文獻 [1] J.-H. Lee, G.A. Galli, J.C. Grossman, "Nanoporous Si as an Efficient Thermoelectric Material", Nano Letters, 8 , 3750-3754, (2008).

[2] L. Hu, G. Chen, "Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications", Nano Letters, 7, 3249-3252, (2007).

[3] 李婉琪,"整合銀染技術與矽奈米線太陽能電池陣列之生醫感測平台研究",奈米科技研究所,交通大學,1-68,(2013).

[4] 歐祖銘,C.-W. Hong,T.-M. Ou,"固態物理與電聲子動態研究磁化矽奈米線熱電晶片".

[5] F.J. Li, S. Zhang, J.W. Lee, "Rethinking of the silicon nanowire growth mechanism during thermal evaporation of Si-containing powders", Thin Solid Films, 558, 75-85, (2014).

[6] N. Wang, Y.Cai, R.Q. Zhang, "Growth of nanowires", Materials Science and Engineering: R: Reports, 60 , 1-51, (2008).

[7] N. Fukata, T. Oshima, T. Tsurui, S. Ito, K. Murakami, "Synthesis of silicon nanowires using laser ablation method and their manipulation by electron beam", Science and Technology of Advanced Materials, 6 , 628, (2005).

[8] N.M. Hwang, W.S. Cheong, D.Y. Yoon, D.-Y. Kim, "Growth of silicon nanowires by chemical vapor deposition: approach by charged cluster model", Journal of Crystal Growth, 218 , 33-39, (2000).

[9] A.I. Hochbaum, R. Fan, R. He, P. Yang, "Controlled Growth of Si Nanowire Arrays for Device Integration", Nano Letters, 5 , 457-460, (2005).

[10] J.R. Arthur, "Molecular beam epitaxy", Surface Science, 500 , 189-217, (2002).

[11] P. Werner, N.D. Zakharov, G. Gerth, L. Schubert, U. Gösele, "On the formation of Si nanowires by molecular beam epitaxy", International Journal of Materials Research, 97 , 1008-1015, (2006).

[12] T. Hanrath, B.A. Korgel, "Supercritical fluid–liquid–solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals", Advanced Materials, 15 , 437-440, (2003).

[13] T. Hanrath, B.A. Korgel, "Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals", Journal of the American Chemical Society, 124 , 1424-1429, (2002).

[14] R.S. Wagner, W.C. Ellis, "Vapor‐liquid‐solid mechanism of single crystal growth", Applied Physics Letters, 4 , 89-90, (1964).

[15] H.-K. Park, B. Yang, S.-W. Kim, G.-H. Kim, D.-H. Youn, S.-H. Kim, S.-L. Maeng, "Formation of silicon oxide nanowires directly from Au/Si and Pd–Au/Si substrates", Physica E: Low-dimensional Systems and Nanostructures, 37 , 158-162, (2007).

[16] Y. Wu, P. Yang, "Direct Observation of Vapor−Liquid−Solid Nanowire Growth", Journal of the American Chemical Society, 12, 3165-3166, (2001).

[17] V. Schmidt, J.V. Wittemann, S. Senz, U. Gösele, "Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties", Advanced Materials, 21 , 2681-2702, (2009).

[18] J.I. Abdul Rashid, J. Abdullah, N.A. Yusof, R. Hajian, "The Development of Silicon Nanowire as Sensing Material and Its Applications", Journal of Nanomaterials, 2013, 16, (2013).

[19] K.W. Kolasinski, "Catalytic growth of nanowires: Vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth", Current Opinion in Solid State and Materials Science, 10, 182-191, (2006).

[20] C.Y. Wen, M.C. Reuter, J. Tersoff, E.A. Stach, F.M. Ross, "Structure, Growth Kinetics, and Ledge Flow during Vapor−Solid−Solid Growth of Copper-Catalyzed Silicon Nanowires", Nano Letters, 10 , 514-519, (2010).

[21] S. Noor Mohammad, "For nanowire growth, vapor-solid-solid (vapor-solid) mechanism is actually vapor-quasisolid-solid (vapor-quasiliquid-solid) mechanism", The Journal of Chemical Physics, 131, 224702, (2009).

[22] J.L. Lensch-Falk, E.R. Hemesath, D.E. Perea, L.J. Lauhon, "Alternative catalysts for VSS growth of silicon and germanium nanowires", Journal of Materials Chemistry, 19, 849-857, (2009).

[23] H.F. Yan, Y.J. Xing, Q.L. Hang, D.P. Yu, Y.P. Wang, J. Xu, Z.H. Xi, S.Q. Feng, "Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism", Chemical Physics Letters, 323, 224-228, (2000).

[24] R.Q. Zhang, Y. Lifshitz, S.T. Lee, "Oxide-Assisted Growth of Semiconducting Nanowires", Advanced Materials, 15 ,635-640, (2003).

[25] H. Han, Z. Huang, W. Lee, "Metal-assisted chemical etching of silicon and nanotechnology applications", Nano Today, 9, 271-304, (2014).

[26] K.Q. Peng, Y.J. Yan, S.P. Gao, J. Zhu, "Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry", Advanced Materials, 14, 1164-1167, (2002).

[27] A. Nassiopoulou, V. Gianneta, C. Katsogridakis, "Si nanowires by a single-step metal-assisted chemical etching process on lithographically defined areas: formation kinetics", Nanoscale Research Letters,.6, 1-8, (2011).

[28] F. Bai, M. Li, R. Huang, D. Song, B. Jiang, Y. Li, "Template-free fabrication of silicon micropillar/nanowire composite structure by one-step etching", Nanoscale Research Letters, 7, 1-5, (2012).

[29] W.-K. To, C.-H. Tsang, H.-H. Li, Z. Huang, "Fabrication of n-Type Mesoporous Silicon Nanowires by One-Step Etching", Nano Letters, 11, 5252-5258, (2011).

[30] L.A. Osminkina, K.A. Gonchar, V.S. Marshov, K.V. Bunkov, D.V. Petrov, L.A. Golovan, F. Talkenberg, V.A. Sivakov, V.Y. Timoshenko, "Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: evidences for light localization effect", Nanoscale research letters, 7, 1-6, (2012).

[31] R. Ouertani, A. Hamdi, C. Amri, M. Khalifa, H. Ezzaouia, "Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method", Nanoscale research letters, 9, 1-10, (2014).

[32] S. Li, W. Ma, Y. Zhou, X. Chen, Y. Xiao, M. Ma, F. Wei, X. Yang, "Fabrication of p-type porous silicon nanowire with oxidized silicon substrate through one-step MACE", Journal of Solid State Chemistry, 213, 242-249, (2014).

[33] S. Li, W. Ma, Y. Zhou, X. Chen, Y. Xiao, M. Ma, W. Zhu, F. Wei, "Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature", Nanoscale research letters, 9 , 1-8, (2014).

[34] Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang, X. Duan, "Electrically conductive and optically active porous silicon nanowires", Nano letters, 9 , 4539-4543, (2009).

[35] M.-L. Zhang, K.-Q. Peng, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-T. Lee, N.-B. Wong, "Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching", The Journal of Physical Chemistry C, 112 , 4444-4450, (2008).

[36] X. Zhong, Y. Qu, Y.-C. Lin, L. Liao, X. Duan, "Unveiling the formation pathway of single crystalline porous silicon nanowires", ACS applied materials & interfaces, 3 , 261-270, (2011).

[37] Y. Qi, Z. Wang, M. Zhang, F. Yang, X. Wang, "A processing window for fabricating heavily doped silicon nanowires by metal-assisted chemical etching", The Journal of Physical Chemistry C, 117 , 25090-25096, (2013).

[38] D.M. Rowe, "CRC handbook of thermoelectrics", CRC press, (1995).

[39] L. Weber, E. Gmelin, "Transport properties of silicon", Applied Physics A, 53 , 136-140, (1991).

[40] A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, "Enhanced thermoelectric performance of rough silicon nanowires", Nature, 451 , 163-167, (2008).

[41] A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard Iii, J.R. Heath, "Silicon nanowires as efficient thermoelectric materials", Nature, 451, 168-171, (2008).

[42] E. Nasser, "Fundamentals of gaseous ionization and plasma electronics", Wiley-Interscience, (1971).

[43] P.K. Chu, J.Y. Chen, L.P. Wang, N. Huang, "Plasma-surface modification of biomaterials", Materials Science and Engineering: R: Reports, 36, 143-206, (2002).

[44] S. Tachi, K. Tsujimoto, S. Okudaira, "Low‐temperature reactive ion etching and microwave plasma etching of silicon", Applied physics letters, 52, 616-618, (1988).

[45] K.-S. Chen, A. Ayón, X. Zhang, S.M. Spearing, "Effect of process parameters on the surface morphology and mechanical performance of silicon structures after deep reactive ion etching (DRIE)", Microelectromechanical Systems, Journal of, 11, 264-275, (2002).

[46] K. Suzuki, A. Sawabe, H. Yasuda, T. Inuzuka, "Growth of diamond thin films by dc plasma chemical vapor deposition", Applied physics letters, 50, 728-729, (1987).

[47] Y. Osada, "Plasma polymerization processes", Elsevier Science Ltd, (1992).

[48] N. Inagaki, "Plasma surface modification and plasma polymerization", CRC Press, (1996).

[49] D.J. Economou, "Pulsed plasma etching for semiconductor manufacturing", Journal of Physics D: Applied Physics, 47, 303001, (2014).

[50] C.-Y. Tsai, S.-Y. Yu, C.-L. Hsin, C.-W. Huang, C.-W. Wang, W.-W. Wu, "Growth and properties of single-crystalline Ge nanowires and germanide/Ge nano-heterostructures", CrystEngComm, 14, 53-58, (2012).

[51] M.C. Wingert, Z.C. Chen, E. Dechaumphai, J. Moon, J.-H. Kim, J. Xiang, R. Chen, "Thermal conductivity of Ge and Ge–Si core–shell nanowires in the phonon confinement regime", Nano letters, 11 , 5507-5513, (2011).

[52] M. Ghossoub, K. Valavala, M. Seong, B. Azeredo, K. Hsu, J. Sadhu, P. Singh, S. Sinha, "Spectral phonon scattering from sub-10 nm surface roughness wavelengths in metal-assisted chemically etched Si nanowires", Nano letters, Vol.13, 1564-1571, (2013).

[53] M. Brodsky, M. Cardona, J. Cuomo, "Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering", Physical Review B, 16, 3556, (1977).

[54] Z. Iqbal, S. Veprek, "Raman scattering from hydrogenated microcrystalline and amorphous silicon", Journal of Physics C: Solid State Physics, 15, 377, (1982).

[55] G. Kumar, G. Prasad, R. Pohl, "Experimental determinations of the Lorenz number", Journal of materials science, 28, 4261-4272, (1993).

[56] M. Holland, "Analysis of lattice thermal conductivity", Physical Review, 132, 2461, (1963).

[57] Y. Ju, K. Goodson, "Phonon scattering in silicon films with thickness of order 100 nm", Applied Physics Letters, 74, 3005-3007, (1999).

[58] D.K. Brice, K.B. Winterbon, "Ion implantation range and energy deposition distributions: Low incident ion energies", Plenum Press, (1975).

[59] S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, J.P. Fleurial, "Nanostructured bulk silicon as an effective thermoelectric material", Advanced Functional Materials, 19, 2445-2452, (2009).

[60] A.I. Hochbaum, D. Gargas, Y.J. Hwang, P. Yang, "Single crystalline mesoporous silicon nanowires", Nano letters, 9 , 3550-3554, (2009).

[61] J.S. Meena, M.-C. Chu, Y.-C. Chang, H.-C. You, R. Singh, P.-T. Liu, H.-P.D. Shieh, F.-C. Chang, F.-H. Ko, "Effect of oxygen plasma on the surface states of ZnO films used to produce thin-film transistors on soft plastic sheets", Journal of Materials Chemistry C, 1, 6613-6622, (2013).

[62] J. Koo, S. Kim, "Charge transport modulation of silicon nanowire by O2 plasma", Solid State Sciences, 11, 1870-1874, (2009).

[63] R. Jaeger, L. Egerton, "Hot Pressing of Potassium‐Sodium Niobates", Journal of the American Ceramic Society, 45, 209-213, (1962).

[64] M. Tokita, Mechanism of spark plasma sintering, Proceeding of NEDO International Symposium on Functionally Graded Materials, Japan, 22,(1999)

指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2015-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明