博碩士論文 102329601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:135 、訪客IP:3.21.233.41
姓名 李馳(LI CHI)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析
(Supercapacitor Properties of Electrochemical Exfoliation Graphene and Boron doping effect in Ionic Liquid Electrolytes)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響
★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究★ 高濃度電解質於鋰電池知應用研究
★ 熱解法製備硬碳材料應用於鈉離子電池負極★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響
★ 離子液體電解質於鈉離子電池之應用★ 研發以二氧化錫為負極材料的鈉離子電池: 電解液、輔助性碳材料與黏著劑的優化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
本研究主要是利用電化學電解方法法剝離製備石墨烯,用來做為超高電容器的電極,電解液則是選用擁有廣大電位窗的離子液體,藉以得到高的能量密度以及功率密度。
目前超高電容電極材料多以石墨烯方向發展,但製程皆過於繁複,本研究期望利用簡便的電化學電解的方法,利用不同電解電流製造不同石墨烯并探討其對於超高電容電化學性質之影響。本研究選用三種不同電解電流下之石墨烯在離子液體BMP-DCA中進行比較,分別是3 A電流下電解之石墨烯 (3 A)、4.5 A電流下電解之石墨烯 (4.5 A)以及6 A電流下電解之石墨烯 (6 A),根據結果顯示,3 A石墨烯的比電容值高於其他兩者,並且擁有高的比電容值 (198 F/g)、能量密度 (74.9 Wh/kg)以及高的功率密度 (18.6 kW/kg),五百圈後維持率仍有86 %。目前超高電容普遍是以rGO在為主軸,本研究比較高溫熱還原之石墨烯以及電化學電解石墨烯在離子液體BMP-DCA的超高電容行為,由結果得知電化學電解石墨烯在離子液體BMP-DCA中有較好的超高電容性能。
本研究嘗試通過摻雜硼原子來對電化學石墨烯進行改質,透過對電化學石墨烯與硼酸之高溫燒結,可以得到最高硼含量為7.5%之石墨烯,因而作為電極材料應用于超高電容中,其中可以得到可以得到最佳硼摻雜條件為硼酸與石墨烯質量比為3:7時,其擁有最高的比能量密度46.9 Wh/kg,以及比功率密度8.6 kW/kg,五百圈後維持率為183%。
關鍵詞:超高電容器、離子液體、石墨烯、電化學電解、B-doping
摘要(英) ABSTRACT
The graphene sheets were prepared by Electrochemical Exfoliation method in this study, and were used for the electrode in supercapacitor. We chose ionic liquids as electrolyte for their wide potential window to get better energy density and power density.
Currently, most of supercapacitor electrodes are graphene sheets, but the processes are too complicated, so this study expects to use a simple electrochemical method to get graphene. We choose different electrolytic currents to manufacture different kind of graphene and then discuss the influences of the electrochemical properties in supercapacitor. In our study, three different electrolysis currents of graphene are choosen to be compared in the ionic liquid BMP-DCA. According to the results, it showed that the current of 3A graphene has a specific capacitance which is higher than the other two. The 3A graphene has a high specific capacitance (198 F / g), which gets better energy density for 74.9 Wh/kg and power density for 18.6 kW/kg, and the retention after five hundred cycles is still 86%. In general, the main manufacture of capacitors electrode is reduced graphene oxide (rGO). So in this study, we also compare the behaviors of the rGO which use the thermal reduction and the electrochemical exfoliation graphene in ionic liquids BMP-DCA. From the results, it shows that the electrochemical exfoliation graphene has the better performance in BMPDCA.
In our study, we attempt to make the electrochemical graphene modified by doping boron atoms through mixing the graphene and boric acid in boiler tube. Then we can get the graphene which the content of boron can be up to 7.5%, and thus use it in supercapacitors as electrode, When the mass ratio of boric acid and graphene is 3:7, we obtain the optimum conditions, which has the highest energy density of 46.9 Wh/kg, and a specific power density of 8.6 kW/kg, and 183% retention after five hundreds cycle.


Key Word: Supercapacitor, Ionic liquid, Graphene, Electrochemical exfoliation, Boron-doping.
關鍵字(中) ★ 超高電容器
★ 離子液體
★ 石墨烯
★ 電化學電解
★ B-doping
關鍵字(英)
論文目次 目錄
第一章、前言 1
第二章、文獻回顧 3
2-1能源儲存裝置概述 3
2-2 超高電容器簡介 5
2-2-1電雙層電容器 (EDLC) 6
2-2-2擬電容器 (pseudo-capacitors) 7
2-3超高電容器之電解質 11
2-4電雙層電容器之材料分類 19
2-5石墨烯之製備方法 22
2-6石墨烯之摻硼改質方法 33
第三章、實驗步驟 37
3-1 碳材之準備 37
3-1-1石墨烯之製備 37
3-1-2摻雜石墨烯之製備 38
3-2電解液之製備 39
3-3 材料特性分析 40
3-3-1表面形貌之觀察 40
3-3-2表面組成以及缺陷結構 40
3-3-3結晶結構分析 40
3-4 碳材於離子液體內電化學性質之評估 41
3-4-1電極之製備 41
3-4-2電化學裝置 41
3-4-3電化學性質之評估 41
第四章、結果與討論 44
4-1不同電流下得到之電化學剝離石墨烯於離子液體內之比較 44
4-1-1不同電流下石墨烯表面形貌之觀察 44
4-1-2電化學剝離石墨烯表面組成以及缺陷結構 45
4-1-3電化學剝離石墨烯結晶結構分析 47
4-1-4離子液體BMP-DCA 47
4-1-5電化學剝離石墨烯於離子液體BMP-DCA中之儲電性能 48
4-1-6電化學剝離石墨烯之小結 51
4-2電化學法剝離石墨烯與熱還原法石墨烯於離子液體之比較 52
4-2-1不同碳材表面形貌之觀察 52
4-2-2不同碳材表面組成以及缺陷結構 53
4-2-3不同碳材結晶結構分析以及比表面積分析 54
4-2-4不同碳材於離子液體BMP-DCA中之儲電性能 54
4-2-5不同製程之石墨烯之小結 56
4-3 B doping之電化學剝離石墨烯於離子液體內之比較 57
4-3-1不同B doping下石墨烯表面形貌之觀察 57
4-3-2不同B doping下石墨烯表面組成以及缺陷結構 58

4-3-3電化學剝離之B doping石墨烯於離子液體BMP-DCA中之儲電性能 59
4-3-4電化學剝離石墨烯之小結 62
第五章、結論 95
參考文獻 97

參考文獻 參考文獻
[1] P. Simon, Y. Gogotsi, “Materials for electrochemical capacitors”. Nat. Mater., 2008.7: p. 845-854
[2] Conway, B. E_. "Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage." Journal of the Electrochemical Society138.6 (1991): 1539-1548.
[3] Challet, S., et al. "Hydrogen adsorption in microporous alkali-doped carbons (activated carbon and single wall nanotubes)." Journal of Physics and Chemistry of Solids 65.2 (2004): 541-544.
[4] Skowronski, J. M., J. Urbaniak, and B. Olejnik. "Influence of the primary ZnCl 2 intercalate on electrochemical bi中間產物 of H 2 SO 4 into graphite." Journal of Physics and Chemistry of Solids 65.2 (2004): 303-308.
[5] Geim, Andre K., and Konstantin S. Novoselov. "The rise of graphene."Nature materials 6.3 (2007): 183-191.
[6] Stankovich, Sasha, et al. "Graphene-based composite materials." Nature442.7100 (2006): 282-286.
[7] Yu, Aiping, et al. "Graphite nanoplatelet-epoxy composite thermal interface materials." The Journal of Physical Chemistry C 111.21 (2007): 7565-7569.
[8] Z. Fan , Q. Zhao, T. Li, “Easy synthesis of porous grapheme nanosheets and their use in supercapacitors”. Carbon, 2012. 50: p. 1699-1712.
[9] Patel, Divia Dinesh, and Jong‐Min Lee. "Applications of ionic liquids." The Chemical Record 12.3 (2012): 329-355.
[10] Plechkova, Natalia V., and Kenneth R. Seddon. "Applications of ionic liquids in the chemical industry." Chemical Society Reviews 37.1 (2008): 123-150.
[11] Galiński, Maciej, Andrzej Lewandowski, and Izabela Stępniak. "Ionic liquids as electrolytes." Electrochimica Acta 51.26 (2006): 5567-5580.
[12] H. Ohno, John Wiley & Sons, Hoboken, “Electrochemical Aspects of Ionic Liquids”. 2008.
[13] M. J. Earle, J. Esperanca, M. A. Gilea, J. N. C. Lopes, L. P. N. Rebelo, J. W. Magee, K. R. Seddon, J. A. Widegren, “The distillation and volatility of ionic liquids”. Nature, 2006. 439: p. 831-834.
[14] Stoller, Meryl D., et al. "Graphene-based ultracapacitors." Nano letters 8.10 (2008): 3498-3502.
[15] Liu, Chenguang, et al. "Graphene-based supercapacitor with an ultrahigh energy density." Nano letters 10.12 (2010): 4863-4868.
[16] Zhang, Li Li, Rui Zhou, and X. S. Zhao. "Graphene-based materials as supercapacitor electrodes." Journal of Materials Chemistry 20.29 (2010): 5983-5992.
[17] T. Y. Kim, H. C. Kang, T. T. Tung, “Ionic liquid-assisted microwave reduction of graphite oxide for supercapacitors”. RSC Adv., 2012. 2: p. 8808-8812.
[18] Y. Y. Liu, D. W. Liu, Q. F. Zhang, G. Z. Cao, “Engineering nanostructured electrodes away from equilibrium for lithium-ionbatteries”. J. Mater. Chem. , 2011. 21: p. 9969-9983.
[19] Brodd, Ralph J., et al. "Batteries, 1977 to 2002." Journal of the Electrochemical Society 151.3 (2004): K1-K11.
[20] J. R. Miller, A. F. Burke, “Electrochemical Capacitors:Challenges and Opportunities for Real-World Applications”. Electrochem. Soc. Interface, 2008. 17: p. 53-57.
[21] Conway, Brian E. Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media, 2013.
[22] Burke, Andrew. "Ultracapacitors: why, how, and where is the technology."Journal of power sources 91.1 (2000): 37-50.
[23] Tan, Yu Bin, and Jong-Min Lee. "Graphene for supercapacitor applications."Journal of Materials Chemistry A 1.47 (2013): 14814-14843.
[24] Kötz, R., and M. Carlen. "Principles and applications of electrochemical capacitors." Electrochimica Acta 45.15 (2000): 2483-2498.
[25] Bullard, G. L., et al. "Operating principles of the ultracapacitor." Magnetics, IEEE Transactions on 25.1 (1989): 102-106.
[26] Nishino, Atsushi, Akihiko Yoshida, and Ichiroh Tanahashi. "Electric double layer capacitor." U.S. Patent No. 4,562,511. 31 Dec. 1985.
[27] Sharma, Pawan, and T. S. Bhatti. "A review on electrochemical double-layer capacitors." Energy Conversion and Management 51.12 (2010): 2901-2912.
[28] Choi, Nam‐Soon, et al. "Challenges Facing Lithium Batteries and Electrical Double‐Layer Capacitors." Angewandte Chemie International Edition 51.40 (2012): 9994-10024.
[29] Conway, B. E., V. Birss, and J. Wojtowicz. "The role and utilization of pseudocapacitance for energy storage by supercapacitors." Journal of Power Sources 66.1 (1997): 1-14.
[30] Conway, B. E., and W. G. Pell. "Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices." Journal of Solid State Electrochemistry 7.9 (2003): 637-644.
[31] N. V. Plechkova, K. R. Seddon, “Applications of ionic liquids in the chemical industry“. Chem. Soc. Rev. , 2008. 37: p. 123-150.
[32] A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, F. Soavi, “Ionic liquids for hybrid supercapacitors”. Electrochem. Commun. , 2004. 6: p. 566-570.33
[33] E. Frackowiak, G. Lota, J. Pernak, “Room-temperature phosphonium ionic liquids for supercapacitor application”. Appl. Phys. Lett. , 2005. 86: p.164104.
[34] Huang, Po-Ling, et al. "Ionic Liquid Electrolytes with Various Constituent Ions for Graphene-based Supercapacitors." Electrochimica Acta 161 (2015): 371-377.
[35] P. Simon, A. Burke, “Nanostructured Carbons: Double-Layer Capacitance and More”. Electrochem. Soc. Interface, 2008. 17: p. 38-43.
[36] Weng, To-Chi, and Hsisheng Teng. "Characterization of high porosity carbon electrodes derived from mesophase pitch for electric double-layer capacitors." Journal of the Electrochemical Society 148.4 (2001): A368-A373.
[37] Frackowiak, E., et al. "Enhanced capacitance of carbon nanotubes through chemical activation." Chemical Physics Letters 361.1 (2002): 35-41.
[38] B. Fang, Y. Z. Wei, K. Maruyama, M. Kumagai, “High capacity supercapacitors based on modified activated carbon aerogel” . J. Appl. Electrochem. , 2005. 35: p. 229-233.
[39] A. B. Fuertes, F. Pico, J. M. Rojo, “Influence of pore structure on electric double-layer capacitance of template mesoporous carbons”. J. Power Sources, 2004. 133: p. 329-336.
[40] G. J. Lee, S. I. Pyun, “Theoretical Approach to Ion Penetration into Pores with Pore Fractal Characteristics during Double-Layer Charging/Discharging on a Porous Carbon Electrode”. Langmuir, 2006. 22: p. 10659-10665.
[41] S. R. C. Vivekchand, C. S. Rout, K. S. Subrahmanyam, A. Govindaraj, C. N. R. Rao, “Graphene-based electrochemical supercapacitors”. J. Chem. Sci. , 2008. 120: p. 9-12.
[42] Trigueiro, João Paulo C., Rodrigo L. Lavall, and Glaura G. Silva. "Supercapacitors based on modified graphene electrodes with poly (ionic liquid)." Journal of Power Sources 256 (2014): 264-273.
[43] Pham, Duy Tho, et al. "Carbon Nanotube-Bridged Graphene 3D Building Blocks for Ultrafast Compact Supercapacitors." ACS nano 9.2 (2015): 2018-2027.
[44] Zheng, C., et al. "Edge-enriched porous graphene nanoribbons for high energy density supercapacitors." Journal of Materials Chemistry A 2.20 (2014): 7484-7490.
[45] Jha, Neetu, et al. "High energy density supercapacitor based on a hybrid carbon nanotube–reduced graphite oxide architecture." Advanced Energy Materials 2.4 (2012): 438-444.
[46] Rao, C. N. R., et al. "Graphene, the new nanocarbon." Journal of Materials Chemistry 19.17 (2009): 2457-2469.
[47] . Terrones, A. R. Botello-Mendez, J. Campos-Delgado, F. Lopez- Urias, Y. I. Vega-Cantu, F. J. Rodriguez-Macias, A. L. Elias, E. Munoz-Sandoval, A. G. Cano-Marquez, J. C. Charlier, H. Terrones, “Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications”. Nano Today, 2010. 5: p. 351-372.
[48] C. Lee, X. D. Wei, J. W. Kysar, J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”. Science, 2008. 321: p. 385-388.
[49] Liu, Wenwen, et al. "Effects of concentration and temperature of EMIMBF 4/acetonitrile electrolyte on the supercapacitive behavior of graphene nanosheets." Journal of Materials Chemistry 22.18 (2012): 8853-8861.
[50] M. Gali´nski, A. Lewandowski, Izabela St˛epniak, “Ionic liquids as electrolytes”. Electrochim. Acta, 2006. 51: p. 5567-5580.
[51] Zhang, Long, et al. "Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors."Scientific reports 3 (2013).
[52] Park, Sungjin, and Rodney S. Ruoff. "Chemical methods for the production of graphenes." Nature nanotechnology 4.4 (2009): 217-224.
[53] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films”. Science, 2004. 306: p. 666.
[54] J. Hou, Y. Shao, M. W. Ellis, R. B. Moored, B. Yie, “Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries”. Phys. Chem. Chem. Phys. , 2011. 13: p. 15384-15402.
[55] Kim, Keun Soo, et al. "Large-scale pattern growth of graphene films for stretchable transparent electrodes." Nature 457.7230 (2009): 706-710.
[56] S. Stankovich, et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”. Carbon, 2007. 45: p. 1558-1565.
[57] Reina, Alfonso, et al. "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition." Nano letters 9.1 (2008): 30-35.
[58] J. Coraux, et al., “Structural coherency of graphene on Ir(111)”. Nano Lett. , 2008. 8: p. 565-570.
[59] Stankovich, Sasha, et al. "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide." Carbon 45.7 (2007): 1558-1565.
[60] S. D. Perera, R. G. Mariano, N. Nijem, Y. Chabal, J. P. Ferraris, K. J. Balkus Jr, “Alkaline deoxygenated graphene oxide for supercapacitor applications: An effective green alternative for chemically reduced grapheme”. J. Power Sources, 2012. 215: p. 1-10.
[61] Schniepp, H. C. "Functionalized single graphene sheets derived from splitting graphite oxide.." Journal of Physical Chemistry B 110(2006).
[62] Mcallister, Michael J., et al. "Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite." Chemistry of Materials19.18(2007):4396-4404.
[63] Wang, Guoxiu, et al. "Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation." Carbon 47.14(2009):3242–3246.
[64] Alanyal03o06lu, Murat, et al. "The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes." Carbon 50.1(2012):142–152.
[65] Wang, J., et al. "High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte.." Journal of the American Chemical Society133.23(2011):8888-8891.
[66] Ming Zhou, et al. "Few-layer graphene obtained by electrochemical exfoliation of graphite cathode." Chemical Physics Letters572.21(2013):61–65.
[67] Kim, Tae Young, et al. "Synthesis of phase transferable graphene sheets using ionic liquid polymers.." Acs Nano 4.3(2010):1612-1618.
[68] Parvez, Khaled, et al. "Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics.." Acs Nano 7.4(2013):3598-3606.
[69] Parvez, Khaled, et al. "Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts." J.am.chem.soc 136.16(2014):6083-6091.
[70] Guo, Hui Lin, et al. "A Green Approach To The Synthesis Of Graphene Nanosheets." Acs Nano 3.9(2009):2653-2659.
[71] Su, Ching Yuan, et al. "High-quality thin graphene films from fast electrochemical exfoliation." Acs Nano 5.3(2011):2332-2339.
[72] Liu, Jilei, et al. "Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod." Nano Energy 2.3(2013):377–386.
[73] Jeong HM, et al. "Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. "Nano Lett 11.6(2011):2472–2477.
[74] Hadadian, Mahboobeh, Elaheh K. Goharshadi, and Abbas Youssefi. "Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids." Journal of Nanoparticle Research 16.12 (2014): 1-17.
[75] Joung, Daeha, et al. "High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis." Nanotechnology 21.16 (2010): 165202.
[76] Wang, Luyang, et al. "Facile preparation of an n-type reduced graphene oxide field effect transistor at room temperature." Chemical Communications50.10 (2014): 1224-1226.
[77] Wu, Zhong-Shuai, et al. "Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries." ACS nano 5.7 (2011): 5463-5471.
[78] Han, Jongwoo, et al. "Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications." ACS nano 7.1 (2012): 19-26.
[79] Zuo, Zicheng, Zhongqing Jiang, and Arumugam Manthiram. "Porous B-doped graphene inspired by Fried-Ice for supercapacitors and metal-free catalysts."Journal of Materials Chemistry A 1.43 (2013): 13476-13483.
[80] Niu, Lengyuan, et al. "Pyrolytic synthesis of boron-doped graphene and its application as electrode material for supercapacitors." Electrochimica Acta108 (2013): 666-673.
[81] Yeom, Da-Young, et al. "High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties." Scientific reports 5 (2015).
[82] Wang, Lu, et al. "Boron-doped graphene: Scalable and tunable P-type carrier concentration doping." The Journal of Physical Chemistry C 117.44 (2013): 23251-23257.
[83] H. Zhang, V. V. Bhat, N. C. Gallego, C. I. Contescu, “Thermal Treatment Effects on Charge Storage Performance of Graphene-Based Materials for Supercapacitors”. ACS Appl. Mater. Interfaces, 2012. 4: p. 3239-3246.
[84] K. Hung, C. Masarapu, T. Ko, B. Wei, “Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric”. J. Power Sources, 2009. 193: p. 944-949.
指導教授 張仍奎 審核日期 2016-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明