博碩士論文 102331006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.220.160.216
姓名 李昱樺(Yu-hua Li)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 以腦電圖觀察大腦恢復清醒的動態歷程
(Dynamic electroencephalographic process from awakening to wakefulness: a simultaneous EEG-fMRI study)
相關論文
★ 應用希爾伯特黃轉換於功能性磁振造影之非穩態信號分析★ 評估生理雜訊對於靜息態功能性磁振造影之影響
★ 瀕死狀態下大腦功能性聯結之動態變化:觀察氯化鉀注射後大鼠之生理反應★ 探討同步功能性磁振造影與腦電圖於夜間睡眠研究
★ 利用同步腦電圖與功能性磁振造影探討睡眠階段之大腦活動★ 探討區域性大腦網路恢復於睡眠遲惰研究
★ 中風復健與大腦的神經可塑性變化: 縱貫性功能性磁振造影研究★ 以功能性磁振造影初探分心於創意醞釀之影響
★ 以靜息態功能性磁振造影探討頸動脈支架手術對於頸動脈狹窄病患大腦功能之影響★ 運用石墨烯射頻線圈增進7T磁振造影訊雜比之研究
★ 睡眠遲惰期間警覺網路於執行警覺任務下的動態恢復歷程
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 從睡眠中醒覺,對動物界所有的生命體來說是件攸關性命的能力。經過一夜睡眠之後,大腦本身的神經生理會隨著先前的睡眠結構、生理時鐘、睡眠恆定、年紀或睡眠失調等而改變;而從睡眠到清醒的過程中除了生理上的變化以外,亦隱含著大腦重新獲得意識以及日常認知功能的意義。先前研究指出,在剛睡醒時,認知行為會暫時有較為低落的表現,此現象被稱之為睡眠遲惰;但是對於大腦如何在睡眠遲惰期間恢復到完全清醒的歷程尚未有深入的了解。因此我們使用同步腦電圖與功能性磁振造影來進行睡眠遲惰之研究,觀察從剛睡醒到清醒期間,大腦自發性反應、認知功能以及行為表現的變化。藉由腦電圖,我們可以區分大腦是否處於睡眠狀態,以及不同腦波在睡眠遲惰期間的變化。本實驗觀察從剛睡醒到清醒期間腦波自發性活動的改變、事件相關電位變化以及大腦網路連結情況,進一步了解在這轉換期間整個生心理狀態之改變。我們的結果發現,在認知功能的表現上,Oz電極的P100振福在睡醒後30分鐘有明顯增加。而在大腦自發活動的表現上,各頻帶都有其特定的空間分布且不隨睡眠遲惰的時間點而改變;但頻帶功率的大小在剛睡醒到清醒時的三個時間點則呈現V型或是倒V型的趨勢.。整體而言,睡醒30分鐘之後,是睡眠遲惰的影響要消散、大腦功能要恢復到完全清醒時的一個轉捩點。
摘要(英) Awakening from sleep is a crucial event for survival in the animal kingdom, which associates with the capability of regaining the consciousness, the recovery of cognitive performances and the arousal under life threats. In modern brain science, the spontaneous transition from sleep to waking might reflect the dynamic processes of brain recovery, affected by several factors include sleep architecture before awakening, circadian phase, sleep homeostatic, age, or sleep disorder. Previous studies found that behavior performance decreased upon awakening, noted as sleep inertia. However, how the brain regulates upon awakening to wakefulness remains unclear. Therefore, we conducted simultaneous EEG and fMRI recordings to investigate the dynamic changes along sleep inertia. In this thesis, we compared the cortical EEG psychomotor vigilance task (PVT) activities and resting state functional connectivity in three time points upon awakening. In PVT, we found that P100 amplitude increased 30 min after awakening in Oz electrode. In the resting state, each frequency band was localized to different brain regions and did not shift to other region across session. The amplitude of frequency power presented a V-shaped or inverse V-shaped along the awakening session. In conclusion, 30 min after awakening could be the turning point for the dissipation of the sleep inertia effect and for the completeness of brain reorganization in wakefulness.
關鍵字(中) ★ 睡眠遲惰
★ 覺醒
★ 靜息態腦波
★ 事件相關電位
關鍵字(英) ★ sleep inertia
★ awakening
★ resting-state EEG
★ event-related potentials
論文目次 Contents

中文摘要 I

ABSTRACT VI

ACKNOWLEDGEMENTS VII

LIST OF FIGURES XII

LIST OF TABLES XI

CHAPTER1. INTRODUCTION 1

1.1 Research purpose 1

1.2 Hypothesis 5

1.3 Thesis structure 5

CHAPTER 2. BACKGROUND 6

2.1 Simultaneous recording EEG-fMRI 6

2.2 Character of electrophysiology in sleep 7

2.3 Sleep Inertia 8

2.4 Psychomotor Vigilance Task 9

2.5 Functions of EEG spectrum inwakefulness 11

CHAPTER 3. MATERIALS AND METHODS 13

3.1 Participants 13

3.2 Experiment Design 13

3.2.1 Pittsburgh Sleep Quality Index (PSQI) 14

3.2.2 Actigraphy 15

3.3 Functional MRI 16

3.4 EEG 17

3.4.1 EEG protocol 17

3.4.2 EEG Pre-processing 18

3.4.3 Psychomotor Vigilance Task behavior data analysis 19

3.4.4 Psychomotor Vigilance Task Event-related potential analysis 19

3.4.5 Resting-state spectrum analysis 20

3.4.6 Resting-state connectivity analysis 21

3.4.7 Statistical analysis 22

CHAPTER 4. OPTIMIZATION OF EEG PROCESSING IN SIMULTANEOUS EEG-FMRI RECORDINGS 24

4.1 Simultaneous EEG-fMRI 24

4.2 MRI-related Artifacts 34

4.3 Ballisto-cardiogram (BCG) artifact 36

4.4 Removing the BCG using spatial pattern removal approaches 40

CHAPTER 5. RESULT 42

5.1 Sleep scoring result 42

5.2 Sleep logs before the experiment day 42

5.3 Cognitive performance 45

5.4 Event-related potential 45

5.5 Spectrum 49

5.5.1 Spectral power during resting 50

5.5.2 Topographic distribution during resting 55

5.6 Topology of the EEG networks 55

CHAPTER 6. DISCUSSION 59

6.1 Technique problem 59

6.2 Type of task 59

6.3 Subjects variation 60

6.4 Prior sleep duration 60

6.5 Cognitive function 62

6.5.1 P100 amplitude 62

6.5.2 P300 latency and amplitudes 63

6.6 Spectrum and topography distribution in Resting 64

6.6.1 Delta dominant in prefrontal-lateral regions 64

6.6.2 Theta dominance in prefrontal 65

6.6.3 Alpha dominance in parieto-occipital regions 65

6.6.4 Beta1 dominance in fronto-central / Beta2 dominance in frontal and parietal 66

6.7 Connectivity in Resting 68

6.8 fMRI in PVT and resting-state 68

CHAPTER7. CONCLUSION 71

REFERENCE 72



參考文獻 Achermann, P., Werth, E., DJ, D., & Borbely, A. A. (1995). Time Courese of Sleep Inertia after Nighttime and Daytime Sleep Episodes. Archives Italiennes de Biologie, 134, 109-119.

Adrian, E. D., & Matthews, B. H. C. (1934). The Bergre rhythm: potential changes from the occipital lobes in man. Brain, 57, 355-385.

Akerstedt, T., & Simon, F. (1997). The three process model of alertness and its extenstion to performance, sleep latency, and sleep length. CHRONOBIOLOGY INTERNATIONAL, 14(2), 115-129.

Akerstedt, T., Torsvall, L., & Gillberg, M. (1989). Sleep and alertness: chronobiological, behavioral, and medical aspects of napping. New York: Raven Press, 205-220.

Allen, P. J., G., P., Krakow, K., DR., F., & L., L. (1998). Identification of EEG events in the MR scanner: The problem of pulse artifact and a method for its subtraction. Neuroimage, 8, 229-239.

Allen, P. J., Josephs, O., & Turner, R. (2000). A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage, 12(2), 230-239. doi: 10.1006/nimg.2000.0599

Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, & CP., P. (2003). The role of actigraphy in the study of sleep and circadian rhythms. SLEEP, 26(3), 342-392.

Arroyo, S., Lesser, R. P., Gordon, B., Uematsu, S., Jackson, D., & Webber, R. (1993). Functional significance of the mu rhythm of human cortex: an electrophysiologic study with subdural electrodes. 87(3), 76-87.

Asada, H., Fukuda, Y., TSUNODA, S., Yamaguchi, M., & Tonoike, M. (1999). Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neurosci Lett, 274, 29-32.

Aserinsky, E., & Kleitman, N. (1953). Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science, 118, 273-274.

Bénar, C.-G., Aghakhani, Y., Wang, Y., Izenberg, A., Al-Asmi, A., Dubeau, F., & Gotman, J. (2003). Quality of EEG in simultaneous EEG-fMRI for epilepsy. Clinical Neurophysiology, 114(3), 569-580. doi: 10.1016/s1388-2457(02)00383-8

Balkin, T. J., Braun, A. R., Wesensten, N. J., Jeffries, K., Varga, M., Baldwin, P., . . . Herscovitch, P. (2002). . Brain, 125, 2308-2319.

Baum, K. T., Desai, A., Field, J., Miller, L. E., Rausch, J., & Beebe, D. W. (2014). Sleep restriction worsens mood and emotion regulation in adolescents. J Child Psychol Psychiatry, 55(2), 180-190. doi: 10.1111/jcpp.12125

Berger, H. (1933). Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten, 99(1), 555-574.

Bonnet, M. H. (1983). Memory for events occurring during arousal from sleep. Psychophysiol, 20, 81-87.

Borbély, A. A. (1982). A two process model of sleep regulation. Hum Neurobiol, 1(3), 195-2004.

Brocke, B., & Stelmack, R. M. (2004). The multilevel approach in sensation seeking: potentials and findings of a four-level research program. In: Stelmack, RM., editor. On the psychobiology of personality. Amsterdam: Elsevier, 267-293.

Brocke, B., Tasche, K. G., & Beauducel, A. (1997). Biopsychological foundations of extraversion: differential effort reactivity and state control. Pers Ind Diff, 22, 447-485.

Broughton R, Fleming J, & J., F. (1996). Home assessment of sleep disorders by portable monitoring. J Clin Neurophysiol, 13(4), 272-284.

Bruck, D., & Pisani, D. L. (1999). The effects of sleep inertia on decision-making performance. European Sleep Research Society, 8, 95-103.

Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends Cogn Sci, 11(2), 49-57. doi: 10.1016/j.tics.2006.11.004

Burgess, A. P., & Gruzelier, J. H. (1997). Short duration synchronization of human theta rhythm during recognition memory. NeuroReport, 8, 1039-1042.

Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, & DJ., K. (1989). The Pittsburgh Sleep Quality Indesx: A New Instrument for Psychiatric Practice and Research. Psychiatry Res, 28(2), 193-213. doi: 10.1016/0165-1781(89)90047-4

Chen, J. L., Ros, T., & Gruzelier, J. H. (2013). Dynamic changes of ICA-derived EEG functional connectivity in the resting state. Hum Brain Mapp, 34(4), 852-868. doi: 10.1002/hbm.21475

Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc Natl Acad Sci U S A, 106(21), 8719-8724. doi: 10.1073/pnas.0900234106

Cole, H. W., & Ray, W. J. (1985). EEG correlates of emotional tasks related to attentional demands. international journal of psychophysiology(1), 33-41.

Dann, S., Beersma, D. G. M., & Borbely, A. A. (1984). Timing of human sleep recovery process gated by a circadian pacemaker. American Psychological Society, 246, R161-R183.

Davies, D. R., & Krkovic, A. (1965). Skin-conductance, alpha-activity and vigilance. American journal of Psychology, 78, 304-306.

de Pasquale, F., Della Penna, S., Snyder, A. Z., Lewis, C., Mantini, D., Marzetti, L., . . . Corbetta, M. (2010). Temporal dynamics of spontaneous MEG activity in brain networks. Proc Natl Acad Sci U S A, 107(13), 6040-6045. doi: 10.1073/pnas.0913863107

De, V. P. (2004). On the psychophysiology of extraversion. In: Stelmack, RM., editor. On the psychobiology of personality. Amsterdam: Elsevier, 297-329.

Debener, S., Mullinger, K. J., Niazy, R. K., & Bowtell, R. W. (2008). Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength. Int J Psychophysiol, 67(3), 189-199. doi: 10.1016/j.ijpsycho.2007.05.015

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods, 134(1), 9-21. doi: 10.1016/j.jneumeth.2003.10.009

Derk-Jan Dijk, Jeanne F. Duffy, & Czeisle, C. A. (2000). . CHRONOBIOLOGY INTERNATIONAL, 17(3), 285-311.

Deuschl, G., & Eisen, A. (1999). Recommendations for the Practice of Clinical Neurophysiology: Guidelines of the International Federation of Clinical Physiology (EEG Suppl. 52). Internation Federation of Clinical Neurophysiology.

Diamond, D. M., Campbell, A. M., Park, C. R., Halonen, J., & Zoladz, P. R. (2007). The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plast, 2007, 60803. doi: 10.1155/2007/60803

Dinges, D. F. (1990). Are you awake? Cognitive Performance and everie during the hypnopompic state. American Psychological Society, 159-175.

Dinges, D. F., Orne, M. T., & Orne, E. C. (1985). Assessing performance upon abrupt awakening from naps during quasi-continuous operations. Behavior Research Methods, Instruments, & Computers, 17(1), 37-45.

Dinges, D. F., & Powell, J. W. (1985). Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behavioral Research Methods, Instrumentation, and Computers, 17, 652-655.

Ferrara, M., Curcio, G., Fratello, F., Moroni, F., Marzano, C., Pellicciari, M. C., & Gennaro, L. D. (2006). The electroencephalographic substratum of the awakening. Behav Brain Res, 167(2), 237-244. doi: 10.1016/j.bbr.2005.09.012

Ferrara, M., & Gennaro, L. D. (2000). The Sleep Inertia Phenomenon during the Sleep-Wake Transition: Theoretical and Operational Issues. Aviat Space Environ Med, 71, 843-848.

Ferrara, M., & Gennaro, L. D. (2011). Going local_ Insights from EEG and stereo-EEG studies of the human sleep-wake cycle. Current topics in Medicinal Chemistry, 11, 2423-2437.

Finelli, L. A., Borbely, A. A., & Achermann, P. (2001). Functional topography of the human nonREM sleep electroencephalogram. European Journal of Neuroscience, 13, 2282-2290.

Fuller, P. M., Gooley, J. J., & Saper, C. B. (2006). Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms, 21(6), 482-493. doi: 10.1177/0748730406294627

Gaffey, C. T., Tenforde, T. S., & Dean, E. E. (1980). Alterations in the electrocardiograms of baboons exposed to DC magnetic fields. Bioelectromagnetics, 2(209).

Gomez, C. M., Clark, V. P., Fan, S., Luck, S. J., & Hillyard, S. A. (1994). Sources of attention-sensitive visual event-related potentials. Brain Topogr, 7(1), 41-51.

Granados-Fuentes, D., & Herzog, E. D. (2013). The clock shop: coupled circadian oscillators. Exp Neurol, 243, 21-27. doi: 10.1016/j.expneurol.2012.10.011

Hayashi, H. I. a. M. (2008). . Sleep and Biological Rhythms, 6, 120–125. doi: 10.1111/j.1479-8425.2008.00341.x

Hillyard, S. A., & Lourdes, A.-V. (1998). Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci U S A, 95, 781-787.

Hung, C. S., Sarasso, S., Ferrarelli, F., Riedner, B., Ghilardi, M. F., Cirelli, C., & Tononi, G. (2013). Local experience-dependent changes in the wake EEG after prolonged wakefulness. SLEEP, 36(1), 59-72. doi: 10.5665/sleep.2302

Huster, R. J., Debener, S., Eichele, T., & Herrmann, C. S. (2012). Methods for simultaneous EEG-fMRI: an introductory review. J Neurosci, 32(18), 6053-6060. doi: 10.1523/JNEUROSCI.0447-12.2012

Jasper, H. (1936). Cortical excitatory state and variability in human brain rhythms. Science, 83, 259-260.

Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T., & Schwaiger, J. (1998). . Neurosci Lett, 244(2), 73-76. doi: 10.1016/S0304-3940(98)00122-0

Koike, T., Kan, S., Misaki, M., & Miyauchi, S. (2011). Connectivity pattern changes in default-mode network with deep non-REM and REM sleep. Neurosci Res, 69(4), 322-330. doi: 10.1016/j.neures.2010.12.018

Koskinen, M., & Vartiainen, N. (2009). Removal of imaging artifacts in EEG during simultaneous EEG/fMRI recording: reconstruction of a high-precision artifact template. Neuroimage, 46(1), 160-167. doi: 10.1016/j.neuroimage.2009.01.061

Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science, 197(4305), 792-795.

Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A., & Kleinschmidt, A. (2003). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci U S A, 100(19), 11053-11058. doi: 10.1073/pnas.1831638100

Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: an open-source toolbox for the analysis of event-related potentials. Front Hum Neurosci, 8, 213. doi: 10.3389/fnhum.2014.00213

Lovato, N., & Lack, L. (2010). The effects of napping on cognitive functioning. Prog Brain Res, 185, 155-166. doi: 10.1016/B978-0-444-53702-7.00009-9

Lubin, A., Hord, D., Tracy, M. L., & Johnson, L. C. (1976). Effects of exercise, bedrest and napping on performance decrement during 40 hours. Psychophysiol, 13, 334-339.

Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique: MIT Press.

Luck, S. J., Hillyard, S. A., Mouloua, M., & Woldorff, M. G. (1994). Effects of spatial cuing on luminance detectability: Psychophysical and electrophysiological evidence for early selection. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 887-904. doi: 10.1037/0096-1523.20.4.887

Makeig, S., & Jung, T.-P. (1995). Changes in alertness and the EEG spectrum. NeuroReport, 7, 213-217.

Malmo, R. B. (1959). Activation: a neuropsychological dimension. Psychological Review, 66(6), 367-386.

Manferd Haider, Paul Spong, & Lindsley, D. B. (1964). Attention, Vigilance, and Cortical Evoked-Potentials in Humans. Science, 180-182.

Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., & Corbetta, M. (2007). Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A, 104(32), 13170-13175. doi: 10.1073/pnas.0700668104

Marcello, M., Fabio, F., Reto, H., Steve, E. K., Harpreet, S., & Giulio, T. (2005). Breakdown of cortical effective connectivity during sleep. Science, 309, 2228-2232.

Marzano, C., Ferrara, M., Moroni, F., & De Gennaro, L. (2011). Electroencephalographic sleep inertia of the awakening brain. Neuroscience, 176, 308-317. doi: 10.1016/j.neuroscience.2010.12.014

McCarthy, G., & Donchin, E. (1981). A metric for thought : A comparison of P300 latency and reaction time. Science, 211(4477), 77-80.

Merica, H., & Fortune, R. D. (2004). State transitions between wake and sleep, and within the ultradian cycle, with focus on the link to neuronal activity. Sleep Med Rev, 8(6), 473-485. doi: 10.1016/j.smrv.2004.06.006

Michael H. Silber, M. B. C. B., Sonia Ancoli-Israel, P. D., Michael H. Bonnet, P. D., Sudhansu Chokroverty, M. D., Madeleine M. Grigg-Damberger, M. D., Max Hirshkowitz, P. D., . . . Conrad Iber, M. D. (2007). . Journal of Clinical Sleep Medicine, 3(2), 121-131.

Mignot, E. (2008). Why we sleep: the temporal organization of recovery. PLoS Biol, 6(4), e106. doi: 10.1371/journal.pbio.0060106

Mizuhara, H., Wang, L. Q., Kobayashi, K., & Yamaguchi, Y. (2004). A long-range cortical network emerging with theta oscillation in a mental task. NeuroReport, 15, 1233-1238.

Muzet, A., Nicolas, A., Tassi, P., Dewasmes, G., & Bonneau, A. (1995). Implementation of napping in industry and the problem of sleep inertia. European Sleep Research Society, 4, 67-69.

Neidermeyer, E. (1999). The normal EEG of the waking adult. In: Niedermeyer E, Lopes da Silva FH, editors. Electroencephalography: basic principles, clinical applications and related fields, 4th ed. Baltimore, MD: Williams and Wilkins, 149-173.

Nobili, L., Gennaro, L. D., Proserpio, P., Moroni, F., Sarasso, S., Pigorini, A., . . . Ferrara, M. (2012). Local aspects of sleep: observations from intracerebral recordings in humans. Prog Brain Res, 199, 219-232.

Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, & K., U. (1992). Intrinsic signal changes accompanying sensory stimulation Functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A., 89, 5951-5955.

Ogilvie, R. D., & Simons, I. (1992). Falling asleep and waking up: a comparison of EEG spectra. sleep, arousal and perfromance.

Onton, J., Delorme, A., & Makeig, S. (2005). Frontal midline EEG dynamics during working memory. Neuroimage, 27, 341-356.

Pfurtscheller, G., & Neuper, C. (1997). Motor imagery activates primary sensorimotor area in humans. Neurosci Lett, 239, 65-68.

Plum, F., Peters, A., & Jones, E. G. (1991). Progressive lesions of the brainstem may initially result in coma, with eventual recovery of some form of a sleep-waking cycle, which indicates that there are some compensatory systems in front of the brainstem, such as the hypothalamic histaminergic and the basal forebrain cholinergic systems. Plenum, New York, 359-425.

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. PNAS, 98, 676-682.

Reilly, R. B., & Lee, T. C. (2010). Electrograms. Stud Health Technol Inform, 152, 90-108.

Reppert, S. M., Perlow, M. J., Ungerleider, L. G., Mishkin, M., Tamarkin, L., Orloff, D. G., . . . Klein, D. C. (1981). Effects of damage to the suprachiasmatic area of the anterior hypothalamus on the daily melatonin and cortisol rhythms in the rhesus monkey. Journal of Nueroscience, 1.

Robin I. Goldman, John M. Stern, Jerome Engel Jr, & Cohen, M. S. (2000). Acquiring simultaneous EEG and functional MRI. Clinical Neurophysiology, 111, 1974-1980.

Rockstroh, B. S., Johnen, M., Elbert, T., Lutzenberger, W., Birbaumer, N., & Rudolph, K. (1987). The pattern and habituation of the orenting response in mand and rats. Int J Neurosci, 37(3-4), 169-182.

Rosanova, M., Casali, A., Bellina, V., Resta, F., Mariotti, M., & Massimini, M. (2009). Natural frequencies of human corticothalamic circuits. J Neurosci, 29(24), 7679-7685. doi: 10.1523/JNEUROSCI.0445-09.2009

Sammer, G., Blecker, C., Gebhardt, H., Bisschoff, M., Stark, R., Morgen, K., & Vaitl, D. (2007). Relationship between regional hemodynamic activity and simultaneously recorded EEG-theta associated with mental arithmeticinduced workload. Hum Brain Mapp, 28, 793-803.

Santamaria, J., & Chiappa, K. H. (1987). The EEG of drowsiness in normal adults. J Clin Neurophysiol, 4(4), 327-382.

Sasaki, K., T.Tsujimoto, Nishikawa, S., Nishitani, N., & Ishihara, T. (1996). Frontal mental theta wave recorded simultaneously with magnetoencephalography and electroencephalography. Neurosci. Res, 26, 79-81.

Scheeringa, R., Bastiaansen, M. C. M., Petersson, K. M., Oostenveld, R., Norris, D. G., & Hagoort, P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. international journal of psychophysiology, 67, 242-251.

Schimke, H., Klimesch, W., & Pfurtscheller, G. (1990). Event-related desynchronization and the selection of an alpha-frequey cy band for quantifying cortical pre- and poststimulus activation. EEG EMG Z. Elektroenzephalogr. Elektromyogr. Verwandte Geb, 21(4), 219-225.

Smith, M. E., McEvovy, L. K., & Gevins, A. (1999). Neurophysiological indices of strategy development and skill acquisition. Brain. Res. Cogn. Brain. Res, 7, 389-404.

Srinivasan, R., Winter, W. R., & Nunez, P. L. (2006). Source analysis of EEG oscillations using high-resolution EEG and MEG. Prog Brain Res, 159, 29-42.

Stenberg, G. (1992). Personality and the EEG: Arousal and emotional arousability. Personality and Individual Differences, 13(10), 1097-1113. doi: 10.1016/0191-8869(92)90025-K

Steriade, M. M., & McCarley, R. W. (2005). Brainstem control of wakefulness and sleep. New York: Plenum, 498.

Tassi, P., Bonnefond, A., Engasser, O., Hoeft, A., Eschenlauer, R., & Muzet, A. (2006). EEG spectral power and cognitive performance during sleep inertia: the effect of normal sleep duration and partial sleep deprivation. Physiol Behav, 87(1), 177-184. doi: 10.1016/j.physbeh.2005.09.017

Tassi, P., & Muzet, A. (2000). Sleep inertia. Sleep Med Rev, 4(4), 341-353. doi: 10.1053/smrv.2000.0098

Teicher, M. (1995). Actigraphy and Motion Analysis: New Tools for Psychiatry. Harvard Review of Psychiatry, 3(1), 18-35. doi: 10.3109/10673229509017161

Tenforde, T. S., Gaffey, C. T., Moyer, B. R., & Budlnger, T. F. (1983). Cardiovascular alterations in Macaca monkeys exposed to stationary magnetic fields: Experimental observations and theoretical analysis. Bioelectromagnetics, 4(1), 1-9. doi: 10.1002/bem.2250040102

Teplan, M. (2002). Fundamental of EEG measurement. Measurement science review, 2.

Tsai, P. J., Chen, S. C., Hsu, C. Y., Wu, C. W., Wu, Y. C., Hung, C. S., . . . Lin, C. P. (2014). Local awakening: Regional reorganizations of brain oscillations after sleep. Neuroimage, 102 Pt 2, 894-903. doi: 10.1016/j.neuroimage.2014.07.032

Tyll, S., Budinger, E., & Noesselt, T. (2011). Thalamic influences on multisensory integration. Commun Integr Biol, 4(4), 378-381. doi: 10.4161/cib.4.4.15222

Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of discrimination process. Psychophysiology, 37(2), 190-203.

Vyazovskiy, V. V., Olcese, U., Hanlon, E. C., Nir, Y., Cirelli, C., & Tononi, G. (2011). Local sleep in awake rats. Nature, 472(7344), 443-447. doi: 10.1038/nature10009

Wendel, K., Vaisanen, O., Malmivuo, J., Gencer, N. G., Vanrumste, B., Durka, P., . . . Grave de Peralta Menendez, R. (2009). EEG/MEG source imaging: methods, challenges, and open issues. Comput Intell Neurosci, 656092. doi: 10.1155/2009/656092

Wu, C. W., Liu, P. Y., Tsai, P. J., Wu, Y. C., Hung, C. S., Tsai, Y. C., . . . Lin, C. P. (2012). Variations in connectivity in the sensorimotor and default-mode networks during the first nocturnal sleep cycle. Brain Connect, 2(4), 177-190. doi: 10.1089/brain.2012.0075

Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18(5), 459-482. doi: 10.1002/cne.920180503

Zalesky, A., Fornito, A., & Bullmore, E. (2012). On the use of correlation as a measure of network connectivity. Neuroimage, 60(4), 2096-2106. doi: 10.1016/j.neuroimage.2012.02.001

指導教授 吳昌衛(Changwei Wu) 審核日期 2015-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明