博碩士論文 102331012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.15.193.45
姓名 黃康庭(Kang-Ting Huang)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 生物啟發兩性雙離子高分子水凝膠的建立與應用
(Development and Applications of Bio-inspired Zwitterionic Polymeric Hydrogels)
相關論文
★ 可功能化抗沾黏性雙離子自組裝單層膜於生物感測器之應用★ 雙離子胺基酸吸附劑在血液中重金屬 吸附之應用
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 新型兩性磷脂類高分子聚合物與其自組裝奈米結構
★ 聚電解質和多價植酸之間向抗菌強韌水凝膠的離子絡合作用★ 磺基甜菜鹼基自組裝單分子層的形成、穩定性和抗污染性的比較研究
★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane
★ 開發可生物降解的完全磷酸膽鹼水凝膠★ Development of Functional Biointerface by Mixed Oligomeric Silatranes
★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry
★ Disulfide-based cross-linkers for functional polymeric networks★ 建立雙離子高分子修飾蛋白質技術與分析
★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER★ 以鄰苯二酚與金屬離子螯合方式形成抗菌及抗污之表面塗層研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-1以後開放)
摘要(中) 水凝膠是一種有潛力的生醫材料,然而,大部分的水凝膠無法有效地防止蛋白質沾黏、細胞貼附與微生物增生,導致嚴重的感染與異物體反應。除此之外,水凝膠的實際應用受限於其脆弱的機械性質。
本研究藉由加入奈米複合材料、運用互穿網絡與雙重網絡策略發展一系列堅韌的生物啟發兩性雙離子高分子水凝膠。
在第二章中,雙離子聚(磺基甜菜鹼丙烯酰胺)奈米複合水凝膠 (pSBAA/15) 具有足夠的機械性質與抗蛋白質、細菌、細胞沾黏的能力,此外,pSBAA/15水凝膠被使用為傷口敷料治療大鼠背部的一般與慢性傷口,pSBAA/15比起市售敷料具有更低的傷口沾粘,因此可以於移除敷料時減少對傷口的傷害,此外,小鼠背部的一般傷口與慢性傷口在使用pSBAA/15後第10天與12天完全癒合,癒合速度快於市售敷料,然而pSBAA/15仍然無法防止傷口感染。
在第三章中,銀奈米粒子被還原並形成於雙離子聚(磺基甜菜鹼丙烯酰胺)奈米複合水凝膠中 (pSBAA/Ag15),銀離子釋放率可以被奈米黏土有效控制,因此pSBAA/Ag15對人類纖維母細胞的細胞毒性微不足道。同時,pSBAA/Ag15具有明顯的抑菌圈,顯示出強大的殺菌能力。在動物實驗中,大鼠背部的細菌感染慢性傷口在使用pSBAA/Ag15水凝膠後第15天傷口達到完全上皮化,顯示出pSBAA/Ag15水凝膠對治療細菌感染的慢性傷口有巨大優勢。
在第四章中,鹽響應互穿型水凝膠 (pTMAEMA/pSBVI)經由光聚合將鬆散交聯的雙離子聚(磺基甜菜鹼乙烯基咪唑)(pSBVI)網絡形成於高度交聯的陽離子聚甲基丙烯酸三(三甲氨基)乙酯氯化物網絡中 (pTMAEMA),由於聚電解質效應與反聚電解質效應,陽離子pTMAEMA與雙離子pSBVI在鹽溶液中展現相反的澎潤行為,因此,pTMAEMA/pSBVI水凝膠展現一系列離子強度可控的總體性質與介面特性,包含機械性質、光學性質、表面摩擦、表面電性、殺菌性質、與表面再生。
在第五章中,我們展示一種全新的方法經由響應性的兩性聚合物作為框架,合成完全生物相容性雙層網絡水凝膠。完全雙離子雙層網絡水凝膠(PLysAA/PSBAA)經由光聚合將聚(磺基甜菜鹼丙烯酰胺)(PSBAA)網絡形成在酸性或鹼性中澎潤的聚賴氨酸丙烯酰胺(PLysAA)網絡中。在生理條件下,雙層網絡水凝膠變成完全的雙離子水凝膠。pLysAA/PSBAA的機械性質可與傳統的雙層網絡水凝膠匹配,除此之外,PLysAA/PSBAA在接觸全血後幾乎沒有血栓形成,展現優異的生物相容性。此外,PLysAA/PSBAA水凝膠在大鼠的皮下植入中可抵抗發炎反應與長期膠囊形成。
強韌的雙離子水凝膠展現高的機械性質與良好的生物相容性,具有高度的潛力用於實際的生物醫學應用。
摘要(英) Hydrogels have regarded as promising biomaterials. However, most hydrogels cannot effectively resist protein adsorption, cell adhesion and microorganism growth, leading to serious infection, and foreign body reaction. Moreover, the weak mechanical properties of hydrogel also limited further application in the real world.
In this thesis, we developed a series of tough zwitterionic hydrogel by the addition of nanocomposite materials, interpenetrating networks, and double network strategies.
In chapter II, the zwitterionic poly(sulfobetaine acrylamide) nanocomposite hydrogels (pSBAA/15) have sufficient mechanical properties and good resistance against the protein, bacteria, and cell adsorption. Moreover, the pSBAA/15 hydrogel was used as a wound dressing to heal the normal wound and diabetic wound in the mice model. Comparing to the commercial dressing, the pSBAA/15 hydrogel showed a low adhesion against the wound surface, leading to the minimization of wound damage when removal of the wound dressing. Furthermore, the pSBAA/15 hydrogels were covered on normal and diabetic wounds on rat dorsal and showed a complete heal after 10 and 12 days, respectively, which was faster than commercial dressings. However, the pSBAA/15 still cannot prevent the bacteria infection on the chronic wound.
In chapter III, the silver nanoparticles were reduced and formed within the pSBAA/Ag15 hydrogels. The release rate of silver ions can be effectively controlled in the presence of the nanoclay, resulting in the negligible cytotoxicity of pSBAA/Ag15 hydrogel against human fibroblasts. Meanwhile, the pSBAA/Ag15 hydrogel showed strong antimicrobial properties by obvious inhibition of zone. In vivo experiment, the infected chronic wound on rat dorsal was complete epithelialization after 15 days with the treatment of pSBAA/Ag15. The finding indicated the great benefits of pSBAA/Ag15 for the treatment of infected chronic wounds.
In chapter IV, a salt-responsive interpenetrating network (IPN) hydrogel was engineered using the double network strategy to form loosely cross-linked zwitterionic poly(sulfobetaine vinylimidazole) (pSBVI) networks into the highly cross-linked cationic poly((trimethylamino)ethyl methacrylate chloride) (pTMAEMA) framework via photo-polymerization. The cationic pTMAEMA and zwitterionic pSBVI show opposite swelling behaviors in salt solutions due to the polyelectrolyte effect and antipolyelectrolyte effect. To this end, the pTMAEMA/pSBVI hydrogels demonstrated a series of switchable bulk and interfacial properties, including mechanical properties, optical properties, surface friction, surface charge, antimicrobial properties, and surface regeneration in response to ionic strength.
In chapter V, we demonstrated a new methodology for developing fully biocompatible double network (DN) hydrogels via using a responsive amphoteric polymer as a first framework. Whole zwitterionic DN hydrogels were synthesized by penetrating and photo-polymerizing zwitterionic poly(sulfobetaine acrylamide) (PSBAA) into a swelled amino-acid based poly(lysine acrylamide) (PLysAA) first network in an acidic or basic solution. Under a physiological condition, the DN hydrogels become fully zwitterionic. The mechanical properties of pLysAA/pSBAA hydrogel were comparable to conventional DN hydrogels. Additionally, the superior biocompatibility of the zwitterionic DN hydrogels displayed negligible thrombus formation after contacting whole blood. Furthermore, PLysAA/PSBAA hydrogels were implanted subcutaneously, showing excellent resistance against inflammatory response and long-term capsule formation.
The tough zwitterionic hydrogels showed high mechanical properties and good biocompatibility, which have a high potential for real-world biomedical applications.
關鍵字(中) ★ Zwitterionic materials
★ Hydrogels
★ Bio-inspired materials
★ Anti-fouling materials
★ Tough hydrogels
★ Biomaterials
關鍵字(英) ★ 雙離子材料
★ 水凝膠
★ 生物啟發材料
★ 抗沾黏材料
★ 堅韌水凝膠
★ 生物材料
論文目次 摘要 i
ABSTRACT iii
ACKNOWLEDGMENTS v
TABLE OF CONTENTS vi
LIST OF FIGURES xii
LIST OF TABLES xvi
CHAPTER I INTRODUCTION 1
1.1 Overview of Hydrogels 1
1.2 Formation of hydrogels 2
1.3 Tough hydrogels 3
1.3.1 Physical interaction enhanced hydrogels 4
1.3.2 Polymer-Intercalated Nanocomposite Hydrogel 5
1.3.3 Interpenetrating polymer networks (IPNs) hydrogels 5
1.3.4 Double-Network Hydrogels 6
1.4 Biofouling 7
1.5 Foreign-body reaction 8
1.7 Antimicrobial materials 10
CHAPTER II ZWITTERIONIC NANOCOMPOSITE HYDROGELS AS EFFECTIVE WOUND DRESSINGS 11
2.1 Introduction 11
2.2 Materials and Methods 14
2.2.1 Preparation of nanocomposite hydrogels 16
2.2.2 Compressive mechanical tests 18
2.2.3 Equilibrium water content (EWC) measurements 18
2.2.4 Water Vapor Transmission rate (WVTR) measurements 18
2.2.5 Cytotoxicity tests 19
2.2.6 Protein fouling tests 20
2.2.7 Bacterial adsorption tests 20
2.2.8 Cell attachment tests 21
2.2.9 Animal experiments 22
2.2.10 Histology 22
2.2.11 Statistical analysis 23
2.3 Results and discussion 23
2.3.1 Mechanical property of nanocomposite hydrogels 23
2.3.2 Hydration of nanocomposite hydrogels 25
2.3.3 Cytotoxicity of nanocomposite hydrogels 27
2.3.4 Protein resistance of nanocomposite hydrogels 28
2.3.5 Bacterial resistance of nanocomposite hydrogels 29
2.3.6 Cell resistance of nanocomposite hydrogels 31
2.3.7 Treatment of full-thickness wounds 32
2.3.8 Histological analysis 39
2.4 Summary 42
CHAPTER III NON-STICKY AND ANTIMICROBIAL ZWITTERIONIC NANOCOMPOSITE DRESSINGS FOR INFECTED CHRONIC WOUNDS 43
3.1 Introduction 43
3.2 Materials and Methods 46
3.2.1 Synthesis of nanocomposite hydrogels 47
3.2.2 Mechanical tests 48
3.2.3 Characterization of Ag nanoparticles and release profiles 49
3.2.4 X-ray diffraction (XRD) 50
3.2.5 Water absorption 50
3.2.6 Cytotoxicity tests 50
3.2.7 Protein fouling tests 51
3.2.8 Germicidal properties 52
3.2.9 Animal experiments 53
3.2.10 Histology 54
3.2.11 Statistical analysis 54
3.3 Results and discussion 54
3.3.1 Mechanical properties of nanocomposite hydrogels 54
3.3.2 Characterization of AgNPs 56
3.3.3 XRD pattern of polymer/clay interaction 58
3.3.4 Water absorption 59
3.3.5 Cytotoxicity tests 60
3.3.6 Protein fouling tests 62
3.3.7 Antimicrobial properties 63
3.3.8 Treatment of full-thickness wounds 65
3.3.9 Histological analysis 70
3.4 Summary 72
CHAPTER IV POLYELECTROLYTE AND ANTIPOLYELECTROLYTE EFFECTS FOR DUAL SALT-RESPONSIVE INTERPENERTATING NETWORK HYDORGELS 73
4.1 Introduction 73
4.2 Materials and Methods 77
4.2.1 Synthesis of the Hydrogel 77
4.2.2 XPS, FTIR, and Microscopy 79
4.2.3 Mechanical test 79
4.2.4 Swelling ratio 79
4.2.5 Optical transmittance measurement 80
4.2.6 Lubrication tests 80
4.2.7 Protein adsorption on hydrogels 81
4.2.8 Bacterial killing and release 81
4.3 Results and Discussion 82
4.3.1 Characterization of hydrogels 82
4.3.2 Mechanical properties of hydrogels 85
4.3.3 Optical properties of hydrogels 88
4.3.4 Swelling behavior of hydrogels 90
4.3.5 Friction properties of hydrogels 94
4.3.6 Protein adsorption of hydrogels 95
4.3.7 Antimicrobial action and surface regeneration of hydrogels 97
4.4 Summary 104
CHAPTER V DEVELOPMENT OF COMPLETE ZWITTERIONIC DOUBLE NETWORK HYDROGELS WITH GREAT TOUGHNESS AND RESISTANCE AGAINST FOREIGN BODY REACTION BY USING RESPONSIVE AMPHOTERIC POLYMER 105
5.1 Introduction 105
5.2 Materials and Methods 109
5.2.1 Synthesis of hydrogel 110
5.2.2 Potentiometric Titrations 111
5.2.3 Mechanical test 112
5.2.4 Swelling degree and volume fraction 112
5.2.5 Extraction cytotoxicity test 113
5.2.6 Cell adsorption 113
5.2.7 Bacteria adsorption 114
5.2.8 Protein adsorption on hydrogels 114
5.2.9 Hemolysis test 115
5.2.10 Subcutaneous implantation of hydrogel 116
5.2.11 Histology 116
5.2.12 Whole blood circulation test 117
5.3 Results and discussion 118
5.3.1 Synthesis and Characterization of PLysAA 118
5.3.3 Mechanical properties of hydrogel 121
5.3.4 Antifouling properties 126
5.3.5 Biocompatibility of hydrogel 131
5.3.6 Hemocompatibility 135
5.4 Summary 140
CHAPTER VI CONCLUSION 141
CHAPTER VII OUTLOOK 143
BIBLIOGRAPHY 145
CURRICULUM VITAE 174
PUBLICATIONS 177
參考文獻 1. Batista, R. A.; Otoni, C. G.; Espitia, P. J. P., Chapter 3 - Fundamentals of chitosan-based hydrogels: elaboration and characterization techniques. In Materials for Biomedical Engineering, Holban, A.-M.; Grumezescu, A. M., Eds. Elsevier: 2019; pp 61-81.
2. Bao, Y.; Ma, J.; Li, N., Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohyd Polym 2011, 84 (1), 76-82.
3. Al-Jabari, M.; Ghyadah, R. A.; Alokely, R., Recovery of hydrogel from baby diaper wastes and its application for enhancing soil irrigation management. J Environ Manage 2019, 239, 255-261.
4. Bashari, A.; Rouhani Shirvan, A.; Shakeri, M., Cellulose-based hydrogels for personal care products. Polym Advan Technol 2018, 29 (12), 2853-2867.
5. Vundavalli, R.; Vundavalli, S.; Nakka, M.; Rao, D. S., Biodegradable nano-hydrogels in agricultural farming - alternative source for water resources. Procedia Materials Science 2015, 10, 548-554.
6. Sheng, W.; Ma, S.; Li, W.; Liu, Z.; Guo, X.; Jia, X., A facile route to fabricate a biodegradable hydrogel for controlled pesticide release. Rsc Adv 2015, 5 (18), 13867-13870.
7. Li, J.; Mooney, D. J., Designing hydrogels for controlled drug delivery. Nat Rev Mater 2016, 1 (12).
8. Huang, K.-T.; Fang, Y.-L.; Hsieh, P.-S.; Li, C.-C.; Dai, N.-T.; Huang, C.-J., Zwitterionic nanocomposite hydrogels as effective wound dressings. J. Mater. Chem. B 2016, 4 (23), 4206-4215.
9. El-Sherbiny, I. M.; Yacoub, M. H., Hydrogel scaffolds for tissue engineering: progress and challenges. Global Cardiology Science and Practice 2013, 2013 (3), 38.
10. Muya, F. N.; Sunday, C. E.; Baker, P.; Iwuoha, E., Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: a critical review. Water Science and Technology 2015, 73 (5), 983-992.
11. Kumar, N.; Mittal, H.; Alhassan, S. M.; Ray, S. S., Bionanocomposite hydrogel for the adsorption of dye and reusability of generated waste for the photodegradation of ciprofloxacin: a demonstration of the circularity concept for water purification. Acs Sustain Chem Eng 2018, 6 (12), 17011-17025.
12. Abd El-Mohdy, H. L.; Hegazy, E. A.; El-Nesr, E. M.; El-Wahab, M. A., Removal of some pesticides from aqueous solutions using PVP/(AAc-co-Sty) hydrogels prepared by gamma radiation. Journal of Macromolecular Science, Part A 2012, 49 (10), 814-827.
13. Peppas, N. A.; Van Blarcom, D. S., Hydrogel-based biosensors and sensing devices for drug delivery. J Control Release 2016, 240, 142-150.
14. Hu, W.; Wang, Z.; Xiao, Y.; Zhang, S.; Wang, J., Advances in crosslinking strategies of biomedical hydrogels. Biomaterials Science 2019, 7 (3), 843-855.
15. Annabi, N.; Tamayol, A.; Uquillas, J. A.; Akbari, M.; Bertassoni, L. E.; Cha, C.; Camci-Unal, G.; Dokmeci, M. R.; Peppas, N. A.; Khademhosseini, A., 25th Anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 2014, 26 (1), 85-124.
16. Garg, T.; Singh, O.; Arora , S.; Murthy, R. S. R., Scaffold: a novel carrier for cell and drug delivery. Begell Digital Library Journals Collection 2012, 29 (1), 1-63.
17. Liu, Y.; He, W.; Zhang, Z.; Lee, B., Recent developments in tough hydrogels for biomedical applications. Gels 2018, 4 (2), 46.
18. Wang, W.; Zhang, Y.; Liu, W., Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog Polym Sci 2017, 71, 1-25.
19. Dai, X.; Zhang, Y.; Gao, L.; Bai, T.; Wang, W.; Cui, Y.; Liu, W., A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv Mater 2015, 27 (23), 3566-3571.
20. Pandey, N.; Hakamivala, A.; Xu, C.; Hariharan, P.; Radionov, B.; Huang, Z.; Liao, J.; Tang, L.; Zimmern, P.; Nguyen, K. T.; Hong, Y., Biodegradable nanoparticles enhanced adhesiveness of mussel-like hydrogels at tissue interface. Adv Healthc Mater 2018, 7 (7), e1701069.
21. Miquelard-Garnier, G.; Creton, C.; Hourdet, D., Synthesis and viscoelastic properties of hydrophobically modified hydrogels. Macromolecular Symposia 2007, 256 (1), 189-194.
22. Bai, T.; Zhang, P.; Han, Y.; Liu, Y.; Liu, W.; Zhao, X.; Lu, W., Construction of an ultrahigh strength hydrogel with excellent fatigue resistance based on strong dipole–dipole interaction. Soft Matter 2011, 7 (6), 2825-2831.
23. Appel, E. A.; del Barrio, J.; Loh, X. J.; Scherman, O. A., Supramolecular polymeric hydrogels. Chem Soc Rev 2012, 41 (18), 6195-6214.
24. Zheng, S. Y.; Ding, H.; Qian, J.; Yin, J.; Wu, Z. L.; Song, Y.; Zheng, Q., Metal-coordination complexes mediated physical hydrogels with high toughness, stick–slip tearing behavior, and good processability. Macromolecules 2016, 49 (24), 9637-9646.
25. Xu, Y.; Liang, K.; Ullah, W.; Ji, Y.; Ma, J., Chitin nanocrystal enhanced wet adhesion performance of mussel-inspired citrate-based soft-tissue adhesive. Carbohydr Polym 2018, 190, 324-330.
26. Chang, X.; Geng, Y.; Cao, H.; Zhou, J.; Tian, Y.; Shan, G.; Bao, Y.; Wu, Z. L.; Pan, P., Dual-crosslink physical hydrogels with high toughness based on synergistic hydrogen bonding and hydrophobic interactions. Macromol Rapid Comm 2018, 39 (14), 1700806.
27. Zhong, M.; Liu, X. Y.; Shi, F. K.; Zhang, L. Q.; Wang, X. P.; Cheetham, A. G.; Cui, H.; Xie, X. M., Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels. Soft Matter 2015, 11 (21), 4235-41.
28. Zhang, Y.; Hu, C.; Xiang, X.; Diao, Y.; Li, B.; Shi, L.; Ran, R., Self-healable, tough and highly stretchable hydrophobic association/ionic dual physically cross-linked hydrogels. Rsc Adv 2017, 7 (20), 12063-12073.
29. Han, L.; Yan, L.; Wang, K.; Fang, L.; Zhang, H.; Tang, Y.; Ding, Y.; Weng, L.-T.; Xu, J.; Weng, J.; Liu, Y.; Ren, F.; Lu, X., Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Materials 2017, 9 (4), e372-e372.
30. Gaharwar, A. K.; Rivera, C. P.; Wu, C.-J.; Schmidt, G., Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 2011, 7 (12), 4139-4148.
31. Haraguchi, K.; Takehisa, T., Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 2002, 14 (16), 1120-1124.
32. Haraguchi, K.; Takehisa, T.; Fan, S., Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules 2002, 35 (27), 10162-10171.
33. Haraguchi, K., Soft nanohybrid materials consisting of polymer–clay networks. In Organic-Inorganic Hybrid Nanomaterials, Kalia, S.; Haldorai, Y., Eds. Springer International Publishing: Cham, 2015; pp 187-248.
34. Millar, J. R., 263. Interpenetrating polymer networks. Styrene–divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates. Journal of the Chemical Society (Resumed) 1960, (0), 1311-1317.
35. Lohani, A.; Singh, G.; Bhattacharya, S. S.; Verma, A., Interpenetrating polymer networks as innovative drug delivery systems. J Drug Deliv 2014, 2014, 583612-583612.
36. Sperling, L. H.; Hu, R., Interpenetrating polymer networks. In Polymer Blends Handbook, Utracki, L. A., Ed. Springer Netherlands: Dordrecht, 2003; pp 417-447.
37. Myung, D.; Waters, D.; Wiseman, M.; Duhamel, P. E.; Noolandi, J.; Ta, C. N.; Frank, C. W., Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 2008, 19 (6), 647-657.
38. Lu, J.; Li, Y.; Hu, D.; Chen, X.; Liu, Y.; Wang, L.; Ashraf, M. A.; Zhao, Y., One-step synthesis of interpenetrating network hydrogels: environment sensitivities and drug delivery properties. Saudi J Biol Sci 2016, 23 (1), S22-31.
39. Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y., Double-network hydrogels with extremely high mechanical strength. Adv Mater 2003, 15 (14), 1155-1158.
40. Chen, Q.; Chen, H.; Zhu, L.; Zheng, J., Fundamentals of double network hydrogels. J. Mater. Chem. B 2015, 3 (18), 3654-3676.
41. Tanaka, Y.; Kuwabara, R.; Na, Y.-H.; Kurokawa, T.; Gong, J. P.; Osada, Y., Determination of fracture energy of high strength double network hydrogels. The Journal of Physical Chemistry B 2005, 109 (23), 11559-11562.
42. Gong, J. P., Why are double network hydrogels so tough? Soft Matter 2010, 6 (12), 2583.
43. Gunari, N.; Brewer, L. H.; Bennett, S. M.; Sokolova, A.; Kraut, N. D.; Finlay, J. A.; Meyer, A. E.; Walker, G. C.; Wendt, D. E.; Callow, M. E.; Callow, J. A.; Bright, F. V.; Detty, M. R., The control of marine biofouling on xerogel surfaces with nanometer-scale topography. Biofouling 2011, 27 (2), 137-149.
44. Haque, M.; Sartelli, M.; McKimm, J.; Abu Bakar, M., Health care-associated infections - an overview. Infect Drug Resist 2018, 11, 2321-2333.
45. Maki, D. G.; Kluger, D. M.; Crnich, C. J., The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc 2006, 81 (9), 1159-1171.
46. Anderson, J. M., Biological responses to materials. Annual review of materials research 2001, 31 (1), 81-110.
47. Grainger, D. W., All charged up about implanted biomaterials. Nature biotechnology 2013, 31 (6), 507-509.
48. Ostuni, E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; Whitesides, G. M., A survey of structure−property relationships of surfaces that resist the adsorption of protein. Langmuir 2001, 17 (18), 5605-5620.
49. Chen, B.-M.; Su, Y.-C.; Chang, C.-J.; Burnouf, P.-A.; Chuang, K.-H.; Chen, C.-H.; Cheng, T.-L.; Chen, Y.-T.; Wu, J.-Y.; Roffler, S. R., Measurement of pre-existing IgG and IgM antibodies against polyethylene glycol in healthy individuals. Anal Chem 2016, 88 (21), 10661-10666.
50. Chang, C.-J.; Chen, C.-H.; Chen, B.-M.; Su, Y.-C.; Chen, Y.-T.; Hershfield, M. S.; Lee, M.-T. M.; Cheng, T.-L.; Chen, Y.-T.; Roffler, S. R.; Wu, J.-Y., A genome-wide association study identifies a novel susceptibility locus for the immunogenicity of polyethylene glycol. Nat Commun 2017, 8 (1), 522.
51. Hsieh, Y.-C.; Wang, H.-E.; Lin, W.-W.; Roffler, S. R.; Cheng, T.-C.; Su, Y.-C.; Li, J.-J.; Chen, C.-C.; Huang, C.-H.; Chen, B.-M.; Wang, J.-Y.; Cheng, T.-L.; Chen, F.-M., Pre-existing anti-polyethylene glycol antibody reduces the therapeutic efficacy and pharmacokinetics of PEGylated liposomes. Theranostics 2018, 8 (11), 3164-3175.
52. Zhang, L.; Cao, Z.; Bai, T.; Carr, L.; Ella-Menye, J. R.; Irvin, C.; Ratner, B. D.; Jiang, S., Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nature biotechnology 2013, 31 (6), 553-556.
53. Lee, H. C.; Gaire, J.; Currlin, S. W.; McDermott, M. D.; Park, K.; Otto, K. J., Foreign body response to intracortical microelectrodes is not altered with dip-coating of polyethylene glycol (PEG). Front Neurosci 2017, 11, 513.
54. Yeh, S. B.; Chen, C. S.; Chen, W. Y.; Huang, C. J., Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir 2014, 30 (38), 11386-11393.
55. Fukazawa, K.; Nakao, A.; Maeda, M.; Ishihara, K., Photoreactive initiator for surface-initiated ATRP on versatile polymeric substrates. ACS Appl Mater Interfaces 2016, 8 (38), 24994-24998.
56. Chou, Y.-N.; Chang, Y.; Wen, T.-C., Applying thermosettable zwitterionic copolymers as general fouling-resistant and thermal-tolerant biomaterial interfaces. ACS Appl Mater Interfaces 2015, 7 (19), 10096-10107.
57. Lin, X.; Jain, P.; Wu, K.; Hong, D.; Hung, H.-C.; O’Kelly, M. B.; Li, B.; Zhang, P.; Yuan, Z.; Jiang, S., Ultralow fouling and functionalizable surface chemistry based on zwitterionic carboxybetaine random copolymers. Langmuir 2019, 35 (5), 1544-1551.
58. Cao, Z.; Jiang, S., Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today 2012, 7 (5), 404-413.
59. Carr, L.; Cheng, G.; Xue, H.; Jiang, S. Y., Engineering the Polymer Backbone To Strengthen Nonfouling Sulfobetaine Hydrogels. Langmuir 2010, 26 (18), 14793-14798.
60. Wei, T.; Tang, Z.; Yu, Q.; Chen, H., Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities. ACS Appl Mater Interfaces 2017, 9 (43), 37511-37523.
61. Zhang, D.; Fu, Y.; Huang, L.; Zhang, Y.; Ren, B.; Zhong, M.; Yang, J.; Zheng, J., Integration of antifouling and antibacterial properties in salt-responsive hydrogels with surface regeneration capacity. J Mater Chem B 2018, 6 (6), 950-960.
62. Shaw, J. E.; Sicree, R. A.; Zimmet, P. Z., Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010, 87 (1), 4-14.
63. Yokoyama, M.; Tanigawa, K.; Murata, T.; Kobayashi, Y.; Tada, E.; Suzuki, I.; Nakabou, Y.; Kuwahata, M.; Kido, Y., Dietary polyunsaturated fatty acids slow the progression of diabetic nephropathy in streptozotocin-induced diabetic rats. Nutr Res 2010, 30 (3), 217-225.
64. Ayalasomayajula, S. P.; Kompella, U. B., Celecoxib, a selective cyclooxygenase-2 inhibitor, inhibits retinal vascular endothelial growth factor expression and vascular leakage in a streptozotocin-induced diabetic rat model. Eur J Pharmacol 2003, 458 (3), 283-289.
65. Tepper, O. M., Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 2002, 106 (22), 2781-2786.
66. Moura, L. I.; Dias, A. M.; Carvalho, E.; de Sousa, H. C., Recent advances on the development of wound dressings for diabetic foot ulcer treatment--a review. Acta Biomater 2013, 9 (7), 7093-7114.
67. Mat Saad, A. Z.; Khoo, T. L.; Halim, A. S., Wound bed preparation for chronic diabetic foot ulcers. ISRN endocrinology 2013, 2013, 9.
68. Hedayati, N.; Carson, J. G.; Chi, Y.-W.; Link, D., Management of mixed arterial venous lower extremity ulceration: A review. Vasc Med 2015, 20 (5), 479-486.
69. Harding, K. G.; Morris, H. L.; Patel, G. K., Healing chronic wounds. BMJ 2002, 324 (7330), 160-163.
70. Boateng, J. S.; Matthews, K. H.; Stevens, H. N.; Eccleston, G. M., Wound healing dressings and drug delivery systems: a review. J Pharm Sci-Us 2008, 97 (8), 2892-2923.
71. Winter, G. D., Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 1962, 193 (4812), 293-294.
72. Dyson, M.; Young, S. R.; Hart, J.; Lynch, J. A.; Lang, S., Comparison of the effects of moist and dry conditions on the process of angiogenesis during dermal repair. J Invest Dermatol 1992, 99 (6), 729-733.
73. Fujishita, S.; Inaba, C.; Tada, S.; Gemmei-Ide, M.; Kitano, H.; Saruwatari, Y., Effect of zwitterionic polymers on wound healing. Biological and Pharmaceutical Bulletin 2008, 31 (12), 2309-2315.
74. Gist, S.; Tio-Matos, I.; Falzgraf, S.; Cameron, S.; Beebe, M., Wound care in the geriatric client. Clin Interv Aging 2009, 4, 269-287.
75. Yang, C.-H.; Chen, S.-H.; Pan, Y.-W.; Chuang, C.-N.; Chao, W.-C.; Young, T.-H.; Chiu, W.-Y.; Wang, C.-K.; Hsieh, K.-H., Preparation and characterization of methoxy-poly(ethylene glycol) side chain grafted onto chitosan as a wound dressing film. J Appl Polym Sci 2015, 132 (31).
76. Moura, L. I. F.; Dias, A. M. A.; Suesca, E.; Casadiegos, S.; Leal, E. C.; Fontanilla, M. R.; Carvalho, L.; de Sousa, H. C.; Carvalho, E., Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2014, 1842 (1), 32-43.
77. Boateng, J.; Burgos-Amador, R.; Okeke, O.; Pawar, H., Composite alginate and gelatin based bio-polymeric wafers containing silver sulfadiazine for wound healing. Int J Biol Macromol 2015, 79, 63-71.
78. Jhong, J.-F.; Venault, A.; Liu, L.; Zheng, J.; Chen, S.-H.; Higuchi, A.; Huang, J.; Chang, Y., Introducing Mixed-Charge Copolymers As Wound Dressing Biomaterials. ACS Applied Materials & Interfaces 2014, 6 (12), 9858-9870.
79. Jhong, J.-F.; Venault, A.; Hou, C.-C.; Chen, S.-H.; Wei, T.-C.; Zheng, J.; Huang, J.; Chang, Y., Surface zwitterionization of expanded poly(tetrafluoroethylene) membranes via atmospheric plasma-induced polymerization for enhanced skin wound healing. Acs Appl Mater Inter 2013, 5 (14), 6732-6742.
80. Chien, H.-W.; Xu, X.; Ella-Menye, J.-R.; Tsai, W.-B.; Jiang, S., High viability of cells encapsulated in degradable poly(carboxybetaine) hydrogels. Langmuir 2012, 28 (51), 17778-17784.
81. Kostina, N. Y.; Sharifi, S.; de los Santos Pereira, A.; Michalek, J.; Grijpma, D. W.; Rodriguez-Emmenegger, C., Novel antifouling self-healing poly(carboxybetaine methacrylamide-co-HEMA) nanocomposite hydrogels with superior mechanical properties. J Mater Chem B 2013, 1 (41), 5644-5650.
82. Goda, T.; Watanabe, J.; Takai, M.; Ishihara, K., Water structure and improved mechanical properties of phospholipid polymer hydrogel with phosphorylcholine centered intermolecular cross-linker. Polymer 2006, 47 (4), 1390-1396.
83. Yang, W.; Chen, S.; Cheng, G.; Vaisocherová, H.; Xue, H.; Li, W.; Zhang, J.; Jiang, S., Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir 2008, 24 (17), 9211-9214.
84. Huang, C.-J.; Li, Y.; Krause, J. B.; Brault, N. D.; Jiang, S., Internal architecture of zwitterionic polymer brushes regulates nonfouling properties. Macromol Rapid Comm 2012, 33 (11), 1003-1007.
85. Mahmud, G.; Huda, S.; Yang, W.; Kandere-Grzybowska, K.; Pilans, D.; Jiang, S.; Grzybowski, B. A., Carboxybetaine methacrylate polymers offer robust, long-term protection against cell adhesion. Langmuir : the ACS journal of surfaces and colloids 2011, 27 (17), 10800-10804.
86. Holmlin, R. E.; Chen, X.; Chapman, R. G.; Takayama, S.; Whitesides, G. M., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 2001, 17 (9), 2841-2850.
87. Zhang, Z.; Chao, T.; Liu, L. Y.; Cheng, G.; Ratner, B. D.; Jiang, S. Y., Zwitterionic hydrogels: an in vivo implantation study. J Biomat Sci-Polym E 2009, 20 (13), 1845-1859.
88. Zhang, Z.; Chao, T.; Jiang, S., Physical, chemical, and chemical−physical double network of zwitterionic hydrogels. The Journal of Physical Chemistry B 2008, 112 (17), 5327-5332.
89. Yin, H.; Akasaki, T.; Lin Sun, T.; Nakajima, T.; Kurokawa, T.; Nonoyama, T.; Taira, T.; Saruwatari, Y.; Ping Gong, J., Double network hydrogels from polyzwitterions: high mechanical strength and excellent anti-biofouling properties. J Mater Chem B 2013, 1 (30), 3685-3693.
90. Chen, Q.; Chen, H.; Zhu, L.; Zheng, J., Fundamentals of double network hydrogels. J Mater Chem B 2015, 3 (18), 3654-3676.
91. Chen, H.; Chen, Q.; Hu, R.; Wang, H.; Newby, B.-m. Z.; Chang, Y.; Zheng, J., Mechanically strong hybrid double network hydrogels with antifouling properties. J Mater Chem B 2015, 3 (27), 5426-5435.
92. Tong, X.; Yang, F., Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties. Biomaterials 2014, 35 (6), 1807-1815.
93. Takahashi, A.; Hamai, K.; Okada, Y.; Sakohara, S., Thermosensitive properties of semi-IPN gel composed of amphiphilic gel and zwitterionic thermosensitive polymer in buffer solutions containing high concentration salt. Polymer 2011, 52 (17), 3791-3799.
94. Ning, J.; Li, G.; Haraguchi, K., Effects of polymer concentration on structure and properties of zwitterionic nanocomposite gels. Macromol Chem Phys 2014, 215 (3), 235-244.
95. Ning, J.; Li, G.; Haraguchi, K., Synthesis of Highly Stretchable, Mechanically Tough, Zwitterionic Sulfobetaine Nanocomposite Gels with Controlled Thermosensitivities. Macromolecules 2013, 46 (13), 5317-5328.
96. Haraguchi, K.; Ning, J.; Li, G., Swelling/deswelling behavior of zwitterionic nanocomposite gels consisting of sulfobetaine polymer–clay networks. Eur Polym J 2015, 68, 630-640.
97. Zhang, Q.; Chen, L.; Dong, Y.; Lu, S., Temperature-sensitivity and cell biocompatibility of freeze-dried nanocomposite hydrogels incorporated with biodegradable PHBV. Materials Science and Engineering: C 2013, 33 (3), 1616-1622.
98. Haraguchi, K.; Takehisa, T.; Ebato, M., Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules 2006, 7 (11), 3267-3275.
99. Zhao, C.; Zhao, J.; Li, X.; Wu, J.; Chen, S.; Chen, Q.; Wang, Q.; Gong, X.; Li, L.; Zheng, J., Probing structure–antifouling activity relationships of polyacrylamides and polyacrylates. Biomaterials 2013, 34 (20), 4714-4724.
100. Arjunan Vasantha, V.; Junhui, C.; Ying, T. B.; Parthiban, A., Salt-responsive polysulfabetaines from acrylate and acrylamide precursors: robust stabilization of metal nanoparticles in hyposalinity and hypersalinity. Langmuir 2015, 31 (40), 11124-11134.
101. Reisch, A.; Hemmerlé, J.; Chassepot, A.; Lefort, M.; Benkirane-Jessel, N.; Candolfi, E.; Mésini, P.; Letscher-Bru, V.; Voegel, J.-C.; Schaaf, P., Anti-fouling phosphorylcholine bearing polyelectrolyte multilayers: cell adhesion resistance at rest and under stretching. Soft Matter 2010, 6 (7), 1503-1512.
102. Tong, Y.-C.; Chin, W.-T.; Cheng, J.-T., Alterations in urinary bladder M2-muscarinic receptor protein and mRNA in 2-week streptozotocin-induced diabetic rats. Neurosci Lett 1999, 277 (3), 173-176.
103. Hsu, S.-h.; Hsieh, P.-S., Self-assembled adult adipose-derived stem cell spheroids combined with biomaterials promote wound healing in a rat skin repair model. Wound Repair Regen 2015, 23 (1), 57-64.
104. Lee, W.-F.; Tsai, C.-C., Synthesis and solubility of the poly(sulfobetaine)s and the corresponding cationic polymers: 1. Synthesis and characterization of sulfobetaines and the corresponding cationic monomers by nuclear magnetic resonance spectra. Polymer 1994, 35 (10), 2210-2217.
105. Arjunan Vasantha, V.; Junhui, C.; Ying, T. B.; Parthiban, A., Salt-responsive polysulfabetaines from acrylate and acrylamide precursors: robust stabilization of metal nanoparticles in hyposalinity and hypersalinity. Langmuir 2015, 31 (40), 11124-11134.
106. Haraguchi, K.; Li, H. J.; Matsuda, K.; Takehisa, T.; Elliott, E., Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels. Macromolecules 2005, 38 (8), 3482-3490.
107. Chang, Y.; Yandi, W.; Chen, W.-Y.; Shih, Y.-J.; Yang, C.-C.; Chang, Y.; Ling, Q.-D.; Higuchi, A., Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine. Biomacromolecules 2010, 11 (4), 1101-1110.
108. Gao, M.; Gawel, K.; Stokke, B. T., Polyelectrolyte and antipolyelectrolyte effects in swelling of polyampholyte and polyzwitterionic charge balanced and charge offset hydrogels. Eur Polym J 2014, 53 (0), 65-74.
109. Nilsson, G. On the measurement of evaporative water loss : methods and clinical applications. Doctoral thesis, comprehensive summary, Zäta Tryckerierna, Linköping, 1977.
110. Ghadiri, M.; Chrzanowski, W.; Lee, W. H.; Fathi, A.; Dehghani, F.; Rohanizadeh, R., Physico-chemical, mechanical and cytotoxicity characterizations of Laponite®/alginate nanocomposite. Appl Clay Sci 2013, 85, 64-73.
111. Quie, P. G.; Belani, K. K., Coagulase-negative staphylococcal adherence and persistence. J Infect Dis 1987, 156 (4), 543-547.
112. Stoodley, P.; Sauer, K.; Davies, D. G.; Costerton, J. W., Biofilms as complex differentiated communities. Annual Review of Microbiology 2002, 56 (1), 187-209.
113. Wiedow, O.; Harder, J.; Bartels, J.; Streit, V.; Christophers, E., Antileukoprotease in human skin: an antibiotic peptide constitutively produced by keratinocytes. Biochem Bioph Res Co 1998, 248 (3), 904-909.
114. Dunne, W. M., Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 2002, 15 (2), 155-166.
115. Huang, C.-J.; Mi, L.; Jiang, S., Interactions of alginate-producing and -deficient pseudomonas aeruginosa with zwitterionic polymers. Biomaterials 2012, 33 (14), 3626-3631.
116. Huang, C.-J.; Chu, S.-H.; Wang, L.-C.; Li, C.-H.; Lee, T. R., Bioinspired Zwitterionic Surface Coatings with Robust Photostability and Fouling Resistance. ACS Applied Materials & Interfaces 2015, 7 (42), 23776-23786.
117. Tamada, Y.; Ikada, Y., Effect of preadsorbed proteins on cell adhesion to polymer surfaces. J Colloid Interf Sci 1993, 155 (2), 334-339.
118. McDaniel, J. C.; Browning, K. K., Smoking, chronic wound healing, and implications for evidence-based practice. Journal of wound, ostomy, and continence nursing : official publication of The Wound, Ostomy and Continence Nurses Society 2014, 41 (5), 415-E2.
119. Sen, C. K.; Gordillo, G. M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T. K.; Gottrup, F.; Gurtner, G. C.; Longaker, M. T., Human skin wounds: a major and snowballing threat to public health and the economy. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society 2009, 17 (6), 763-771.
120. Wu, S. C.; Driver, V. R.; Wrobel, J. S.; Armstrong, D. G., Foot ulcers in the diabetic patient, prevention and treatment. Vascular health and risk management 2007, 3 (1), 65-76.
121. Moroz, A.; Deffune, E., Platelet-rich plasma and chronic wounds: remaining fibronectin may influence matrix remodeling and regeneration success. Cytotherapy 2013, 15 (11), 1436-1439.
122. Sacco, P.; Travan, A.; Borgogna, M.; Paoletti, S.; Marsich, E., Silver-containing antimicrobial membrane based on chitosan-TPP hydrogel for the treatment of wounds. Journal of Materials Science: Materials in Medicine 2015, 26 (3), 128.
123. GhavamiNejad, A.; Park, C. H.; Kim, C. S., In situ synthesis of antimicrobial silver nanoparticles within antifouling zwitterionic hydrogels by catecholic redox chemistry for wound healing application. Biomacromolecules 2016, 17 (3), 1213-1223.
124. Boonkaew, B.; Suwanpreuksa, P.; Cuttle, L.; Barber, P. M.; Supaphol, P., Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity. J Appl Polym Sci 2014, 131 (9).
125. Das, A.; Kumar, A.; Patil, N. B.; Viswanathan, C.; Ghosh, D., Preparation and characterization of silver nanoparticle loaded amorphous hydrogel of carboxymethylcellulose for infected wounds. Carbohyd Polym 2015, 130, 254-261.
126. Lalani, R.; Liu, L., Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules 2012, 13 (6), 1853-1863.
127. Jee, J.-P.; Kim, H.-J., Development of hydrogel lenses with surface-immobilized PEG layers to reduce protein adsorption. B Korean Chem Soc 2015, 36 (11), 2682-2687.
128. Kostina, N. Y.; Sharifi, S.; de los Santos Pereira, A.; Michálek, J.; Grijpma, D. W.; Rodriguez-Emmenegger, C., Novel antifouling self-healing poly(carboxybetaine methacrylamide-co-HEMA) nanocomposite hydrogels with superior mechanical properties. J Mater Chem B 2013, 1 (41), 5644-5650.
129. Kostina, N. Y.; Rodriguez-Emmenegger, C.; Houska, M.; Brynda, E.; Michálek, J., Non-fouling hydrogels of 2-hydroxyethyl methacrylate and zwitterionic carboxybetaine (meth)acrylamides. Biomacromolecules 2012, 13 (12), 4164-4170.
130. Huang, K.-T.; Fang, Y.-L.; Hsieh, P.-S.; Li, C.-C.; Dai, N.-T.; Huang, C.-J., Zwitterionic nanocomposite hydrogels as effective wound dressings. J Mater Chem B 2016, 4 (23), 4206-4215.
131. Carr, L.; Cheng, G.; Xue, H.; Jiang, S., Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels. Langmuir 2010, 26 (18), 14793-14798.
132. Gong, J. P., Why are double network hydrogels so tough? Soft Matter 2010, 6 (12), 2583-2590.
133. Wood, A. T.; Everett, D.; Budhwani, K. I.; Dickinson, B.; Thomas, V., Wet-laid soy fiber reinforced hydrogel scaffold: fabrication, mechano-morphological and cell studies. Materials Science and Engineering: C 2016, 63, 308-316.
134. Li, Y.; Wang, C.; Zhang, W.; Yin, Y.; Rao, Q., Preparation and characterization of PAM/SA tough hydrogels reinforced by IPN technique based on covalent/ionic crosslinking. J Appl Polym Sci 2015, 132 (4).
135. Harding, K. G.; Szczepkowski, M.; Mikosiński, J.; Twardowska-Saucha, K.; Blair, S.; Ivins, N. M.; Saucha, W.; Cains, J.; Peters, K.; Parsons, D.; Bowler, P., Safety and performance evaluation of a next-generation antimicrobial dressing in patients with chronic venous leg ulcers. Int Wound J 2016, 13 (4), 442-448.
136. Lin, Y.-H.; Hsu, W.-S.; Chung, W.-Y.; Ko, T.-H.; Lin, J.-H., Silver-based wound dressings reduce bacterial burden and promote wound healing. Int Wound J 2016, 13 (4), 505-511.
137. Burd, A.; Kwok, C. H.; Hung, S. C.; Chan, H. S.; Gu, H.; Lam, W. K.; Huang, L., A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen 2007, 15 (1), 94-104.
138. Boonkaew, B.; Kempf, M.; Kimble, R.; Cuttle, L., Cytotoxicity testing of silver-containing burn treatments using primary and immortal skin cells. Burns : journal of the International Society for Burn Injuries 2014, 40 (8), 1562-1569.
139. Wei, J.-C.; Yen, Y.-T.; Wang, Y.-T.; Hsu, S.-h.; Lin, J.-J., Enhancing silver nanoparticle and antimicrobial efficacy by the exfoliated clay nanoplatelets. Rsc Adv 2013, 3 (20), 7392-7397.
140. Kim, J.-Y.; Ihn, K.-J.; Na, J.-S., Synthesis of silver nanoparticles within intercalated clay/polymer nanocomposite via in situ electron transfer reaction. J Ind Eng Chem 2011, 17 (2), 248-253.
141. Díez-Pascual, A. M.; Díez-Vicente, A. L., Wound healing bionanocomposites based on castor oil polymeric films reinforced with chitosan-modified ZnO nanoparticles. Biomacromolecules 2015, 16 (9), 2631-2644.
142. Haraguchi, K.; Li, H.-J.; Matsuda, K.; Takehisa, T.; Elliott, E., Mechanism of forming organic/inorganic network structures during In-situ free-radical polymerization in PNIPA−clay nanocomposite hydrogels. Macromolecules 2005, 38 (8), 3482-3490.
143. Leung, V.; Hartwell, R.; Yang, H.; Ghahary, A.; Ko, F., Bioactive nanofibres for wound healing applications. Journal of Fiber Bioengineering and Informatics 2011, 4 (1), 1-14.
144. Nazari Pour, S.; Ghugare, S. V.; Wiens, R.; Gough, K.; Liu, S., Controlled in situ formation of polyacrylamide hydrogel on PET surface via SI-ARGET-ATRP for wound dressings. Appl Surf Sci 2015, 349, 695-704.
145. Fuchs, A. V.; Ritz, S.; Pütz, S.; Mailänder, V.; Landfester, K.; Ziener, U., Bioinspired phosphorylcholine containing polymer films with silver nanoparticles combining antifouling and antibacterial properties. Biomaterials Science 2013, 1 (5), 470-477.
146. Sileika, T. S.; Kim, H.-D.; Maniak, P.; Messersmith, P. B., Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. Acs Appl Mater Inter 2011, 3 (12), 4602-4610.
147. Balamurugan, A.; Balossier, G.; Laurent-Maquin, D.; Pina, S.; Rebelo, A. H. S.; Faure, J.; Ferreira, J. M. F., An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system. Dent Mater 2008, 24 (10), 1343-1351.
148. Peetsch, A.; Greulich, C.; Braun, D.; Stroetges, C.; Rehage, H.; Siebers, B.; Köller, M.; Epple, M., Silver-doped calcium phosphate nanoparticles: Synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells. Colloids and Surfaces B: Biointerfaces 2013, 102, 724-729.
149. Wren, A. W.; Hassanzadeh, P.; Placek, L. M.; Keenan, T. J.; Coughlan, A.; Boutelle, L. R.; Towler, M. R., Silver nanoparticle coated bioactive glasses – composites with Dex/CMC hydrogels: characterization, solubility, and in vitro biological studies. Macromol Biosci 2015, 15 (8), 1146-1158.
150. Falanga, V., Growth factors and chronic wounds: the need to understand the microenvironment. The Journal of Dermatology 1992, 19 (11), 667-672.
151. Gao, M.; Gawel, K.; Stokke, B. T., Polyelectrolyte and antipolyelectrolyte effects in swelling of polyampholyte and polyzwitterionic charge balanced and charge offset hydrogels. Eur Polym J 2014, 53, 65-74.
152. Liang, D.; Lu, Z.; Yang, H.; Gao, J.; Chen, R., Novel asymmetric wettable AgNPs/chitosan wound dressing: in vitro and in vivo evaluation. Acs Appl Mater Inter 2016, 8 (6), 3958-3968.
153. Wijnhoven, S. W. P.; Peijnenburg, W. J. G. M.; Herberts, C. A.; Hagens, W. I.; Oomen, A. G.; Heugens, E. H. W.; Roszek, B.; Bisschops, J.; Gosens, I.; Van De Meent, D.; Dekkers, S.; De Jong, W. H.; van Zijverden, M.; Sips, A. J. A. M.; Geertsma, R. E., Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 2009, 3 (2), 109-138.
154. Barlas, F. B.; Ag Seleci, D.; Ozkan, M.; Demir, B.; Seleci, M.; Aydin, M.; Tasdelen, M. A.; Zareie, H. M.; Timur, S.; Ozcelik, S.; Yagci, Y., Folic acid modified clay/polymer nanocomposites for selective cell adhesion. J Mater Chem B 2014, 2 (37), 6412-6421.
155. Hidalgo, E.; Domı́nguez, C., Study of cytotoxicity mechanisms of silver nitrate in human dermal fibroblasts. Toxicol Lett 1998, 98 (3), 169-179.
156. Meira, S. M. M.; Jardim, A. I.; Brandelli, A., Adsorption of nisin and pediocin on nanoclays. Food Chem 2015, 188, 161-169.
157. Chen, H.; Yuan, L.; Song, W.; Wu, Z.; Li, D., Biocompatible polymer materials: Role of protein–surface interactions. Prog Polym Sci 2008, 33 (11), 1059-1087.
158. Fischer, M.; Vahdatzadeh, M.; Konradi, R.; Friedrichs, J.; Maitz, M. F.; Freudenberg, U.; Werner, C., Multilayer hydrogel coatings to combine hemocompatibility and antimicrobial activity. Biomaterials 2015, 56, 198-205.
159. Stone, P. W.; Pogorzelska-Maziarz, M.; Herzig, C. T.; Weiner, L. M.; Furuya, E. Y.; Dick, A.; Larson, E., State of infection prevention in US hospitals enrolled in the national health and safety network. Am J Infect Control 2014, 42 (2), 94-99.
160. Li, X.; Wu, B.; Chen, H.; Nan, K.; Jin, Y.; Sun, L.; Wang, B., Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections. J Mater Chem B 2018, 6 (26), 4274-4292.
161. Neoh, K. G.; Hu, X.; Zheng, D.; Kang, E. T., Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials 2012, 33 (10), 2813-2822.
162. Sun, D.; Babar Shahzad, M.; Li, M.; Wang, G.; Xu, D., Antimicrobial materials with medical applications. Mater Technol 2015, 30 (sup6), B90-B95.
163. Childs, A.; Li, H.; Lewittes, D. M.; Dong, B.; Liu, W.; Shu, X.; Sun, C.; Zhang, H. F., Fabricating customized hydrogel contact lens. Sci Rep-Uk 2016, 6, 34905.
164. Beddoes, C. M.; Whitehouse, M. R.; Briscoe, W. H.; Su, B., Hydrogels as a replacement material for damaged articular hyaline cartilage. Materials (Basel, Switzerland) 2016, 9 (6), 443.
165. Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S. L.; Mutton, R.; Clare, A. S.; Wang, S.; Liu, Y.; Zhao, Q.; D’Souza, F.; Donnelly, G. T.; Willemsen, P. R.; Pettitt, M. E.; Callow, M. E.; Callow, J. A.; Liedberg, B., Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments. Biomacromolecules 2008, 9 (10), 2775-2783.
166. Lowe, S.; O′Brien-Simpson, N. M.; Connal, L. A., Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates. Polymer Chemistry 2015, 6 (2), 198-212.
167. Zhu, Y.; Zhang, J.; Yang, J.; Pan, C.; Xu, T.; Zhang, L., Zwitterionic hydrogels promote skin wound healing. J. Mater. Chem. B 2016, 4 (30), 5105-5111.
168. Ishihara, K.; Oda, H.; Aikawa, T.; Konno, T., Bioinspired phospholipid polymer hydrogel system for cellular engineering. Macromolecular Symposia 2015, 351 (1), 69-77.
169. Gao, B.; Konno, T.; Ishihara, K., Cytocompatible and spontaneously forming phospholipid polymer hydrogels. Eur Polym J 2015, 72, 577-589.
170. Tang, Y.; Cai, X.; Xiang, Y.; Zhao, Y.; Zhang, X.; Wu, Z., Cross-linked antifouling polysaccharide hydrogel coating as extracellular matrix mimics for wound healing. J Mater Chem B 2017, 5 (16), 2989-2999.
171. Cheng, G.; Li, G.; Xue, H.; Chen, S.; Bryers, J. D.; Jiang, S., Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials 2009, 30 (28), 5234-5240.
172. Huang, K.-T.; Fang, Y.-L.; Hsieh, P.-S.; Li, C.-C.; Dai, N.-T.; Huang, C.-J., Non-sticky and antimicrobial zwitterionic nanocomposite dressings for infected chronic wounds. Biomaterials Science 2017, 5 (6), 1072-1081.
173. Yang, K.; Han, Q.; Chen, B.; Zheng, Y.; Zhang, K.; Li, Q.; Wang, J., Antimicrobial hydrogels: promising materials for medical application. Int J Nanomed 2018, 13, 2217-2263.
174. Hoque, J.; Bhattacharjee, B.; Prakash, R. G.; Paramanandham, K.; Haldar, J., Dual function injectable hydrogel for controlled release of antibiotic and local antibacterial therapy. Biomacromolecules 2018, 19 (2), 267-278.
175. Wang, L.; He, J.; Zhu, L.; Wang, Y.; Feng, X.; Chang, B.; Karahan, H. E.; Chen, Y., Assembly of pi-functionalized quaternary ammonium compounds with graphene hydrogel for efficient water disinfection. J Colloid Interf Sci 2019, 535, 149-158.
176. Huang, L.; Zhang, L.; Xiao, S.; Yang, Y.; Chen, F.; Fan, P.; Zhao, Z.; Zhong, M.; Yang, J., Bacteria killing and release of salt-responsive, regenerative, double-layered polyzwitterionic brushes. Chem Eng J 2018, 333, 1-10.
177. Xiao, S.; Zhang, M.; He, X.; Huang, L.; Zhang, Y.; Ren, B.; Zhong, M.; Chang, Y.; Yang, J.; Zheng, J., Dual salt- and thermoresponsive programmable bilayer hydrogel actuators with pseudo-interpenetrating double-network structures. ACS Appl Mater Interfaces 2018, 10 (25), 21642-21653.
178. Wang, Z.; Han, X.; Wang, Y.; Men, K.; Cui, L.; Wu, J.; Meng, G.; Liu, Z.; Guo, X., Facile preparation of low swelling, high strength, self-healing and pH-responsive hydrogels based on the triple-network structure. Frontiers of Materials Science 2019, 13 (1), 54-63.
179. Shang, J.; Theato, P., Smart composite hydrogel with pH-, ionic strength- and temperature-induced actuation. Soft Matter 2018, 14 (41), 8401-8407.
180. Yuk, H.; Lin, S.; Ma, C.; Takaffoli, M.; Fang, N. X.; Zhao, X., Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat Commun 2017, 8, 14230.
181. Kim, Y. S.; Liu, M.; Ishida, Y.; Ebina, Y.; Osada, M.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T., Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat Mater 2015, 14 (10), 1002-1007.
182. Xiao, S.; Zhang, M.; He, X.; Huang, L.; Zhang, Y.; Ren, B.; Zhong, M.; Chang, Y.; Yang, J.; Zheng, J., Dual salt- and thermoresponsive programmable bilayer hydrogel actuators with pseudo-interpenetrating double-network structures. Acs Appl Mater Inter 2018, 10 (25), 21642-21653.
183. Chester, S. A., Gel mechanics: a thermo-mechanically coupled theory for fluid permeation in elastomeric materials. Procedia IUTAM 2015, 12, 10-19.
184. Tavakoli, J.; Tang, Y., Hydrogel based sensors for biomedical applications: an updated review. Polymers 2017, 9 (8), 364.
185. Dicker, M. P. M.; Baker, A. B.; Iredale, R. J.; Naficy, S.; Bond, I. P.; Faul, C. F. J.; Rossiter, J. M.; Spinks, G. M.; Weaver, P. M., Light-triggered soft artificial muscles: molecular-level amplification of actuation control signals. Sci Rep 2017, 7 (1), 9197.
186. Yuk, H.; Lu, B.; Zhao, X., Hydrogel bioelectronics. Chem Soc Rev 2019, 48 (6), 1642-1667.
187. Chen, H.; Yang, J.; Xiao, S.; Hu, R.; Bhaway, S. M.; Vogt, B. D.; Zhang, M.; Chen, Q.; Ma, J.; Chang, Y.; Li, L.; Zheng, J., Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties. Acta Biomater 2016, 40, 62-69.
188. Hernández-Vargas, G.; Ponce-Ponce de León, C. A.; González-Valdez, J.; Iqbal, H. M. N., “Smart” polymers: physicochemical characteristics and applications in bio-separation strategies. Separation & Purification Reviews 2018, 47 (3), 199-213.
189. Xiao, S.; Yang, Y.; Zhong, M.; Chen, H.; Zhang, Y.; Yang, J.; Zheng, J., Salt-responsive bilayer hydrogels with pseudo-double-network structure actuated by polyelectrolyte and antipolyelectrolyte effects. Acs Appl Mater Inter 2017, 9 (24), 20843-20851.
190. Wang, D.; Tan, Y.; Yu, L.; Xiao, Z.; Du, J.; Ling, J.; Li, N.; Wang, J.; Xu, S.; Huang, J., Tuning morphology and mechanical property of polyacrylamide/Laponite/titania dual nanocomposite hydrogels by titania. Polym Composite 2019, 40 (S1), E466-E475.
191. Xiang, H.; Xia, M.; Cunningham, A.; Chen, W.; Sun, B.; Zhu, M., Mechanical properties of biocompatible clay/P(MEO2MA-co-OEGMA) nanocomposite hydrogels. J Mech Behav Biomed 2017, 72, 74-81.
192. Zhang, M.; Ren, X.; Duan, L.; Gao, G., Joint double-network hydrogels with excellent mechanical performance. Polymer 2018, 153, 607-615.
193. Diao, W.; Wu, L.; Ma, X.; Zhuang, Z.; Li, S.; Bu, X.; Fang, Y., Highly stretchable, ionic conductive and self-recoverable zwitterionic polyelectrolyte-based hydrogels by introducing multiple supramolecular sacrificial bonds in double network. J Appl Polym Sci 2019, 136 (29), 47783.
194. Park, S.; Edwards, S.; Hou, S.; Boudreau, R.; Yee, R.; Jeong, K. J., A multi-interpenetrating network (IPN) hydrogel with gelatin and silk fibroin. Biomaterials Science 2019, 7 (4), 1276-1280.
195. Wang, Y.; Yu, H.; Yang, H.; Hao, X.; Tang, Q.; Zhang, X., An injectable interpenetrating polymer network hydrogel with tunable mechanical properties and self-healing abilities. Macromol Chem Phys 2017, 218 (23), 1700348.
196. Wu, L.; Mao, G.; Nian, G.; Xiang, Y.; Qian, J.; Qu, S., Mechanical characterization and modeling of sponge-reinforced hydrogel composites under compression. Soft Matter 2018, 14 (21), 4355-4363.
197. Wang, Z.; Lin, M.; Wang, M.; Song, X.; Zhang, C.; Dong, Z.; Zhang, J.; Yang, Z., Polymerizable microsphere-induced high mechanical strength of hydrogel composed of acrylamide. Materials (Basel, Switzerland) 2018, 11 (6), 880.
198. Dragan, E. S., Advances in interpenetrating polymer network hydrogels and their applications. Pure and Applied Chemistry 2014, 86 (11), 1707-1721.
199. Huang, C.-J.; Chen, Y.-S.; Chang, Y., Counterion-activated nanoactuator: reversibly switchable killing/releasing bacteria on polycation brushes. Acs Appl Mater Inter 2015, 7 (4), 2415-2423.
200. Vasantha, V. A.; Jana, S.; Parthiban, A.; Vancso, J. G., Water swelling, brine soluble imidazole based zwitterionic polymers – synthesis and study of reversible UCST behaviour and gel–sol transitions. Chem Commun 2014, 50 (1), 46-48.
201. Buck, C. C.; Dennis, P. B.; Gupta, M. K.; Grant, M. T.; Crosby, M. G.; Slocik, J. M.; Mirau, P. A.; Becknell, K. A.; Comfort, K. K.; Naik, R. R., Anion-mediated effects on the size and mechanical properties of enzymatically crosslinked suckerin hydrogels. Macromol Biosci 2019, 19 (3), 1800238.
202. Xiao, S.; Zhang, Y.; Shen, M.; Chen, F.; Fan, P.; Zhong, M.; Ren, B.; Yang, J.; Zheng, J., Structural dependence of salt-responsive polyzwitterionic brushes with an anti-polyelectrolyte effect. Langmuir 2018, 34 (1), 97-105.
203. Xiao, S.; Ren, B.; Huang, L.; Shen, M.; Zhang, Y.; Zhong, M.; Yang, J.; Zheng, J., Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Current Opinion in Chemical Engineering 2018, 19, 86-93.
204. Sakamaki, T.; Inutsuka, Y.; Igata, K.; Higaki, K.; Yamada, N. L.; Higaki, Y.; Takahara, A., Ion-specific hydration states of zwitterionic poly(sulfobetaine methacrylate) brushes in aqueous solutions. Langmuir 2019, 35 (5), 1583-1589.
205. Cao, Z.; Mi, L.; Mendiola, J.; Ella-Menye, J.-R.; Zhang, L.; Xue, H.; Jiang, S., Reversibly switching the function of a surface between attacking and defending against bacteria. Angewandte Chemie International Edition 2012, 51 (11), 2602-2605.
206. Cutiongco, M. F. A.; Kukumberg, M.; Peneyra, J. L.; Yeo, M. S.; Yao, J. Y.; Rufaihah, A. J.; Le Visage, C.; Ho, J. P.; Yim, E. K. F., Submillimeter diameter poly(vinyl alcohol) vascular graft patency in rabbit model. Frontiers in Bioengineering and Biotechnology 2016, 4 (44).
207. Anderson, J. M.; Rodriguez, A.; Chang, D. T., Foreign body reaction to biomaterials. Semin Immunol 2008, 20 (2), 86-100.
208. Sheikh, Z.; Brooks, P. J.; Barzilay, O.; Fine, N.; Glogauer, M., Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials (Basel) 2015, 8 (9), 5671-5701.
209. Zhang, W.; Li, G.; Lin, Y.; Wang, L.; Wu, S., Preparation and characterization of protein-resistant hydrogels for soft contact lens applications via radical copolymerization involving a zwitterionic sulfobetaine comonomer. J Biomater Sci Polym Ed 2017, 28 (16), 1935-1949.
210. Means, A. K.; Shrode, C. S.; Whitney, L. V.; Ehrhardt, D. A.; Grunlan, M. A., Double network hydrogels that mimic the modulus, strength, and lubricity of cartilage. Biomacromolecules 2019, 20 (5), 2034-2042.
211. Goor, O. J. G. M.; Brouns, J. E. P.; Dankers, P. Y. W., Introduction of anti-fouling coatings at the surface of supramolecular elastomeric materials via post-modification of reactive supramolecular additives. Polymer Chemistry 2017, 8 (34), 5228-5238.
212. Chen, K.; Zhou, S.; Wu, L., Self-repairing nonfouling polyurethane coatings via 3D-grafting of PEG-b-PHEMA-b-PMPC copolymer. Rsc Adv 2015, 5 (127), 104907-104914.
213. Jeon, S. I.; Lee, J. H.; Andrade, J. D.; De Gennes, P. G., Protein—surface interactions in the presence of polyethylene oxide: I. Simplified theory. Journal of Colloid and Interface Science 1991, 142 (1), 149-158.
214. Chen, S.; Li, L.; Zhao, C.; Zheng, J., Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 2010, 51 (23), 5283-5293.
215. Huang, K.-T.; Ishihara, K.; Huang, C.-J., Polyelectrolyte and antipolyelectrolyte effects for dual salt-responsive interpenetrating network hydrogels. Biomacromolecules 2019, 20 (9), 3524-3534.
216. Bin Imran, A.; Esaki, K.; Gotoh, H.; Seki, T.; Ito, K.; Sakai, Y.; Takeoka, Y., Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat Commun 2014, 5 (1), 5124.
217. Meng, Q.; Wang, Y.; Li, Y.; Wang, H.; Shen, C.; Sun, J., Fabrication of hydrogel tubes with vascular mimicked stiffness for construction of in vitro vascular models. ACS Applied Bio Materials 2018, 1 (2), 237-245.
218. Li, W.; An, H.; Tan, Y.; Lu, C.; Liu, C.; Li, P.; Xu, K.; Wang, P., Hydrophobically associated hydrogels based on acrylamide and anionic surface active monomer with high mechanical strength. Soft Matter 2012, 8 (18), 5078-5086.
219. Tanabe, Y.; Yasuda, K.; Azuma, C.; Taniguro, H.; Onodera, S.; Suzuki, A.; Chen, Y. M.; Gong, J. P.; Osada, Y., Biological responses of novel high-toughness double network hydrogels in muscle and the subcutaneous tissues. J. Mater. Sci.-Mater. Med. 2008, 19 (3), 1379-1387.
220. Li, W.; Liu, Q.; Liu, L., Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity. J Biomater Sci Polym Ed 2014, 25 (14-15), 1730-42.
221. Wang, H.; Wu, H.; Lee, C.-J.; Lei, X.; Zhe, J.; Xu, F.; Cheng, F.; Cheng, G., pH-Sensitive Poly(histidine methacrylamide). Langmuir 2016, 32 (25), 6544-6550.
222. Maji, T.; Banerjee, S.; Biswas, Y.; Mandal, T. K., Dual-stimuli-responsivel-serine-based zwitterionic UCST-type polymer with tunable thermosensitivity. Macromolecules 2015, 48 (14), 4957-4966.
223. Romanski, J.; Karbarz, M.; Pyrzynska, K.; Jurczak, J.; Stojek, Z., Polymeric hydrogels modified with ornithine and lysine: Sorption and release of metal cations and amino acids. Journal of Polymer Science Part A: Polymer Chemistry 2012, 50 (3), 542-550.
224. Liu, Q.; Singh, A.; Liu, L., Amino acid-based zwitterionic poly(serine methacrylate) as an antifouling material. Biomacromolecules 2013, 14 (1), 226-231.
225. Alswieleh, A. M.; Cheng, N.; Canton, I.; Ustbas, B.; Xue, X.; Ladmiral, V.; Xia, S.; Ducker, R. E.; El Zubir, O.; Cartron, M. L.; Hunter, C. N.; Leggett, G. J.; Armes, S. P., Zwitterionic Poly(amino acid methacrylate) Brushes. J Am Chem Soc 2014, 136 (26), 9404-9413.
226. Nagaoka, S.; Shundo, A.; Satoh, T.; Nagira, K.; Kishi, R.; Ueno, K.; Iio, K.; Ihara, H., Method for a convenient and efficient synthesis of amino acid acrylic monomers with zwitterionic structure. Synthetic Commun 2005, 35 (19), 2529-2534.
227. Mirzakhanian, Z.; Faghihi, K.; Barati, A.; Momeni, H. R., Synthesis and characterization of fast-swelling porous superabsorbent hydrogel based on starch as a hemostatic agent. Journal of Biomaterials Science, Polymer Edition 2015, 26 (18), 1439-1451.
228. Zhi, X.; Li, P.; Gan, X.; Zhang, W.; Shen, T.; Yuan, J.; Shen, J., Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of lysine. Journal of Biomaterials Science, Polymer Edition 2014, 25 (14-15), 1619-1628.
229. ZEYNALI, M. E.; RABIEI, A., Alkaline hydrolysis of polyacrylamide and study on poly (acrylamide-co-sodium acrylate) properties. IRANIAN POLYMER JOURNAL (ENGLISH) 2002, 11 (4 (40)), 269-275.
230. Chen, Q.; Yan, X.; Zhu, L.; Chen, H.; Jiang, B.; Wei, D.; Huang, L.; Yang, J.; Liu, B.; Zheng, J., Improvement of mechanical strength and fatigue resistance of double network hydrogels by ionic coordination interactions. Chem Mater 2016, 28 (16), 5710-5720.
231. Chen, H.; Liu, Y.; Ren, B.; Zhang, Y.; Ma, J.; Xu, L.; Chen, Q.; Zheng, J., Super bulk and interfacial toughness of physically crosslinked double-network hydrogels. Adv Funct Mater 2017, 27 (44), 1703086.
232. Gefen, A.; Margulies, S. S., Are in vivo and in situ brain tissues mechanically similar? J Biomech 2004, 37 (9), 1339-1352.
233. Bas, O.; D’Angella, D.; Baldwin, J. G.; Castro, N. J.; Wunner, F. M.; Saidy, N. T.; Kollmannsberger, S.; Reali, A.; Rank, E.; De-Juan-Pardo, E. M.; Hutmacher, D. W., An integrated design, material, and fabrication platform for engineering biomechanically and biologically functional soft tissues. Acs Appl Mater Inter 2017, 9 (35), 29430-29437.
234. Engler, A. J.; Griffin, M. A.; Sen, S.; Bönnemann, C. G.; Sweeney, H. L.; Discher, D. E., Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. The Journal of cell biology 2004, 166 (6), 877-887.
235. Oliveira, W. F.; Silva, P. M. S.; Silva, R. C. S.; Silva, G. M. M.; Machado, G.; Coelho, L. C. B. B.; Correia, M. T. S., Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect 2018, 98 (2), 111-117.
236. Crémet, L.; Corvec, S.; Bémer, P.; Bret, L.; Lebrun, C.; Lesimple, B.; Miegeville, A.-F.; Reynaud, A.; Lepelletier, D.; Caroff, N., Orthopaedic-implant infections by Escherichia coli : molecular and phenotypic analysis of the causative strains. J Infection 2012, 64 (2), 169-175.
237. Opdahl, A.; Kim, S. H.; Koffas, T. S.; Marmo, C.; Somorjai, G. A., Surface mechanical properties of pHEMA contact lenses: viscoelastic and adhesive property changes on exposure to controlled humidity. J Biomed Mater Res A 2003, 67A (1), 350-356.
238. Zhang, J.; Zhu, Y.; Song, J.; Yang, J.; Pan, C.; Xu, T.; Zhang, L., Novel balanced charged alginate/PEI polyelectrolyte hydrogel that resists foreign-body reaction. ACS Appl Mater Interfaces 2018, 10 (8), 6879-6886.
239. Weber, M.; Steinle, H.; Golombek, S.; Hann, L.; Schlensak, C.; Wendel, H. P.; Avci-Adali, M., Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility. Frontiers in bioengineering and biotechnology 2018, 6, 99-99.
240. Deng, X.; Wang, T.; Zhao, F.; Li, L.; Zhao, C., Poly(ether sulfone)/activated carbon hybrid beads for creatinine adsorption. J Appl Polym Sci 2007, 103 (2), 1085-1092.
241. Yamakawa, S.; Hayashida, K., Advances in surgical applications of growth factors for wound healing. Burns & Trauma 2019, 7 (1), 10.
242. Zhu, Y.; Liu, S.; Shi, X.; Han, D.; Liang, F., A thermally responsive host–guest conductive hydrogel with self-healing properties. Materials Chemistry Frontiers 2018, 2 (12), 2212-2219.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2020-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明