博碩士論文 102331016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.191.46.36
姓名 李欣達(Hsin-Ta Li)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱
(Classification of Lower Limb Motion for Hemiparetic Patients through IMU and EMG Signal Processing)
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究之目的在於發展一套針對偏癱患者下肢運動之布氏動作階段(Brunnstrom recovery stage)自動分級系統。本研究藉由自製無線九軸慣性感測器,結合市售無線生理表面肌電圖擷取裝置所架構之量測系統,測量患者之下肢動作訊號;隨後,本研究對所量測之訊號進行分析,萃取出對於布氏動作階段分級有用之特徵,用以訓練本研究所提出基於決策規則之分類系統,分別比較k最佳鄰居法、人工類神經網路、以及支撐向量機等分類演算法之分類能力。交叉驗證則是使用更客觀的leave subjects out法取代過去常用之leave one out法,用以計算分類之成功率。實驗結果顯示使用支撐向量機演算法來分類布氏動作階段,相較於k最佳鄰居法、以及人工類神經網路能得到最高的正確率。本研究所提出之分類系統的穩健性則是透過訓練不同患者人數的資料進行驗證;並且根據其分類之結果,可以歸納出本研究所提出之自動分類演算法,具有準確預測偏癱患者下肢運動之布氏動作階段分類的潛力。
摘要(英) The purpose of this study is to develop an automatic system for classifying lower limb Brunnstrom stages of hemiparetic patients. In this study, the measurement system was employed both IMU and sEMG to acquire the lower limb motion signals from patients. Afterward, this study extracted some useful features for the proposed rule-based classification system and compared different classification algorithms such as k-nearest neighbor, artificial neural network and support vector machine.
Instead of leave one out cross validation, the leave subjects out cross validation was used to calculate the successful rate of classification. The result of the experiment shows that SVM has the highest accuracy to classify Brunnstrom stage than k-NN and ANN. The robustness of this classification system was verified by training different number of subject data. According to the classification result, it can be concluded that the proposed classification system has the potential to predict the lower limb Brunnstrom stage for hemiparetic patients.
關鍵字(中) ★ 慣性感測
★ 表面肌電圖
★ 布氏動作階段
★ 偏癱
★ 分類
關鍵字(英) ★ inertial sensing
★ surface electromyogram
★ Brunnstrom recovery stage
★ hemiparesis
★ classification
論文目次 摘要 i
Abstract ii
Acknowledgements iii
Table of Contents iv
List of Figures v
List of Tables vi
Chapter 1 Introduction 1
1-1 Background 1
1-2 Literature review 2
1-3 Framework of the thesis 4
Chapter 2 Subjects and data acquisition 6
2-1 Measurement devices 6
2-2 The EMG signals 9
2-3 Experimental protocol 11
2-4 Ethics issue 13
Chapter 3 Methodology 14
3-1 Description of human kinesiology and physiology 15
3-2 Feature extraction 16
3-2.1 Features for classifier 1 16
3-2.2 Features for classifier 2 16
3-2.3 Features for classifier 3 17
3-3 Classification techniques 20
3-3.1 k-nearest neighbor (k-NN) 20
3-3.2 Artificial neural network (ANN) 21
3-3.3 Support vector machine (SVM) 23
Chapter 4 Results and discussion 26
4-1 Results 26
4-1.1 Cross validation 26
4-1.2 Verification of features 27
4-1.3 Classification results 31
4-2 Discussion 35
4-2.1 Practical predict stage 35
4-2.2 Stability of classification system 35
4-2.3 Ambiguous classification between adjacent stages 36
Chapter 5 Conclusion and future work 37
References 38
參考文獻 [1] V. L. Feigin, M. H. Forouzanfar, R. Krishnamurthi, G. A. Mensah, M. Connor and D. A. Bennett, “Global and regional burden of stroke during 1990-2010: findings from the global burden of disease study 2010,” The Lancet, Vol. 383, Issue 9913, pp. 245-255, 2014.
[2] N. F. Gordon, M. Gulanick, F. Costa, G. Fletcher, B. A. Franklin and E. J. Roth, “Physical activity and exercise recommendations for stroke survivors,” Circulation, Vol. 109, pp. 2031-2041, 2004.
[3] T. Giorgino, P. Tormene, G. Maggioni, D. Capozzi, S. Quaglini and C. Pistarini, “Assessment of sensorized garments as flexible support to self-administered post-stroke physical rehabilitation,” European Journal of Physical and Rehabilitation Medicine, Vol. 45, No. 1, pp. 75-84, 2009.
[4] J. Langan, K. DeLave, L. Phillips, P. Pangilinan and S. H. Brown, “Home-based telerehabilitation shows improved upper limb function in adults with chronic stroke: a pilot study,” Journal of Rehabilitation Medicine, Vol. 45, No. 2, pp. 217-220, 2013.
[5] S. Brunnstrom, “Motor testing procedures in hemiplegia: based on sequential recovery stages,” Physical Therapy, Vol. 46, No. 4, pp. 357-375, 1966.
[6] U. B. Flansbjer, A. M. Holmback, D. Downham, C. Patten and J. Lexell, “Reliability of gait performance tests in men and women with hemiparesis after stroke,” Journal of Rehabilitation Medicine, Vol. 37, No. 2, pp. 75-82, 2005.
[7] M. D. Bland, A. Sturmoski, M. Whitson, L. T. Connor, R. Fucetola and T. Huskey, “Prediction of discharge walking ability from initial assessment in a stroke inpatient rehabilitation facility population,” Archives of Physical Medicine and Rehabilitation, Vol. 93, No. 8, pp. 1441-1447, 2012.
[8] H. Zhou and H. Hu, “Human motion tracking for rehabilitation-a survey,” Biomedical Signal Processing and Control, Vol. 3, Issue 1, pp. 1-18, 2008.
[9] S. Allin, N. Baker, E. Eckel and D. Ramanan, “Robust tracking of the upper limb for functional stroke assessment,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 18, No. 5, pp. 542-550, 2010.
[10] R. Schmidt, C. Disselhorst-Klug, J. Silny and G. Rau, “A marker-based measurement procedure for unconstrained wrist and elbow motions,” Journal of Biomechanics, Vol. 32, No. 6, pp. 615-621, 1999.
[11] P. S. Lum, C. G. Burgar, D. E. Kenney and H. F. M. Van der Loos, “Quantification of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis,” IEEE Transactions on Biomedical Engineering, Vol. 46, No. 6, pp. 652-662, 1999.

[12] N. Jarrasse, M. Tagliabue, J. V. G. Robertson, A. Maiza, V. Crocher, A. Roby-Brami and G. Morel, “A methodology to quantify alterations in human upper limb movement during co-manipulation with an exoskeleton,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 18, No. 4, pp. 389-397, 2010.
[13] H. Zheng, N. D. Black and N. D. Harris, “Position-sensing technologies for movement analysis in stroke rehabilitation,” Medical & Biological Engineering & Computing, Vol. 43, No. 4, pp. 413-420, 2005.
[14] M. Sekine, Y. Abe, M. Sekimoto, Y. Higashi, T. Fujimoto, T. Tamura and Y. Fukui, “Assessment of gait parameter in hemiplegic patients by accelerometry,” Proceedings of The 22nd Annual Engineering in Medicine and Biology Society International Conference, Vol. 3, pp. 1879-1882, 2000.
[15] T. Liu, Y. Inoue and K. Shibata, “Development of a wearable sensor system for quantitative gait analysis,” Measurement, Vol. 42, Issue 7, pp. 978-988, 2009.
[16] D. Staudenmann, K. Roeleveld, D. F. Stegeman and J. H. van Dieen, “Methodological aspects of SEMG recordings for force estimation--a tutorial and review,” Journal of Electromyography and Kinesiology, Vol. 20, No. 3, pp. 375-387, 2010.
[17] F. Moosavi, A. Pasdar, H. Ehsani and M. Rostami, “An EMG-driven musculoskeletal model to predict muscle forces during performing a weight training exercise with a dumbbell,” Proceedings of The 19th Iranian Conference on Biomedical Engineering, pp. 79-84, 2012.
[18] C. Fleischer and G. Hommel, “A human--exoskeleton interface utilizing electromyography,” IEEE Transactions on Robotics, Vol. 24, No. 4, pp. 872-882, 2008.
[19] O. Tunçel, K. Altun and B. Barshan, “Classifying human leg motions with uniaxial piezoelectric gyroscopes,” Sensors, Vol. 9, No. 11, pp. 8508-8546, 2009.
[20] H. Y. Lau, K. Y. Tong and H. Zhu, “Support vector machine for classification of walking conditions of persons after stroke with dropped foot,” Human Movement Science, Vol. 28, No. 4, pp. 504-514, 2009.
[21] Q. L. Li, Y. Song and Z. G. Hou, “Estimation of lower limb periodic motions from sEMG using least squares support vector regression,” Neural Processing Letters, Vol. 41, Issue 3, pp. 371-388, 2015.
[22] C. J. De Luca, “Surface electromyography: detection and recording,” Available: http://www.delsys.com/Attachments_pdf/WP_SEMGintro.pdf
[23] E. A. Clancy, E. L. Morin and R. Merletti, “Sampling, noise-reduction and amplitude estimation issues in surface electromyography,” Journal of Electromyography and Kinesiology, Vol. 12, No. 1, pp. 1-16, 2002.

[24] A. R. Webb and K. D. Copsey, Statistical Pattern Recognition, 3rd ed., John Wiley & Sons, 2011.
[25] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., Macmillan, 1994.
[26] V. Vapnik, The Nature of Statistical Learning Theory, 2nd ed., Springer, 2000.
[27] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2000.
[28] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 3, pp. 1-27, 2011.
[29] J. Yousefi and A. Hamilton-Wright, “Characterizing EMG data using machine-learning tools,” Computers in Biology and Medicine, Vol. 51, pp. 1-13, 2014.
[30] S. D. Jush, C. H. Wang, C. L. Hsieh, M. H. Chen, and C. L. Chen, “The Brunnstrom Recovery Scale: Its Reliability and Concurrent Validity,” Journal of Occupational Therapy Association R.O.C., Vol. 14, No. 1, pp. 1-12, 1996.
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2016-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明