博碩士論文 102350605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:54.225.57.120
姓名 戴姍姍(Alejandra Michelle Tercero Villagran)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 利用Landsat衛星影像監測並預測中美洲瓜地馬拉首都–瓜地馬拉市之都市發展
(Urban development monitoring and prediction for Guatemala City, Guatemala, C.A., using Landsat imagery)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 無節制的城都市擴張,可能會導致許多污染問題,並需要面臨都市管理策略的重新規劃。瓜地馬拉有著美洲最高的都市化率,而瓜地馬拉市是該國最大的城市,並且有著快速增長的人口,從1994年的1813,825人成長至2013年的257,616人。因此這個城市的擴張和人口的增加,政府需要對未來土地利用和都市資源的分配進行合理的規劃。
本研究主要使用遙測影像技術及統計分析對瓜地馬拉市做都市成長情況的土地覆蓋變遷分析。為了實現未來17年的城市土地覆蓋預測,該時期的歷史資料必須被觀察。首先,收集相關的衛星影像、統計數據和地理資訊來觀察近來17年的都市變化。本研究蒐集了1997、2000、2003、2009和2014年的Landsat影像進行地表覆蓋分類,並根據現有的土地覆蓋調查圖層以進行分類精度的評估。最後,蒐集其他地理和人口資料來建立都市變遷的預測模式。此模式使用了邏輯回歸分析(logistic regression analysis)為基礎的細胞自動機模式來模擬都市未來的擴張情形。本研究使用1997年和2003年的影像來校正模式,而2003、2009和2014年的影像則被用來驗證此模式。本研究成果可做為一個未來都市成長的可能情境,並為瓜地馬拉市未來17年的都市發展規劃提供了有用的參考資訊。
摘要(英) Remote sensing has proven to be an efficient tool to study the urban development. The uncontrolled expansion of the urban can bring many challenges and problems like the increase in carbon dioxide concentration and the need for a larger transportation and services network.
Guatemala is the country with the highest urbanization rate in America, and its largest city is Guatemala City, which shows a rapid increase in population from 1,813,825 inhabitants in 1994 to 3,257,616 in 2013. Governmental institutions need to prepare for this city’s expansion and population increase by making the most sustainable decisions for land use, services distribution and natural disasters prevention to mention a few.
The objective of this thesis is to monitor and predict the urban development of Guatemala City using spatial data and statistical analysis. In order to achieve a prediction for the next seventeen years, at least the same amount of time had to be monitored.
First, the related satellite images, statistical data and GIS (Geographical Information Systems) data were collected to observe the urban changes of the city in the last seventeen years. Then, the changes were studied through the analysis of a supervised classification performed on four Landsat images of Guatemala City, corresponding to the dates of 1997, 2003, 2009 and 2014 respectively. Statistics of the four images were then processed and integrated with other geographical and demographical databases to examine the changes in the city and provide information for the creation of a model.
A logit-based CA (cellular automata) model was applied to simulate the city’s expansion. Images of 1997 and 2003 were used to calibrate the model and images from the year 2003, 2009 and 2014 were used to confirm its accuracy.
The model is expected to be able to create different urban growth scenarios that can serve as base to predict and plan the development of Guatemala City for the next seventeen years.
關鍵字(中) ★ 城都市擴張
★ 瓜地馬拉市
★ Landsat
★ logit-based CA
關鍵字(英) ★ Landsat image
★ logit-based CA
★ Guatemala City
★ Urban development
論文目次 ABSTRACT ii
ACKNOWLEDGEMENTS iii
LIST OF FIGURES vi
LIST OF TABLES x
ACRONYMS xi
Chapter 1. INTRODUCTION 1
1.1. Presentation of urban areas and their expansion 1
1.2. Selection of the study area 3
1.3. Geographic information systems 5
1.4. Landsat imagery 5
1.5 Prediction models 6
1.6. Purpose of research 7
1.6.1. Research question 7
1.6.2 Research objectives 7
1.6.3. Research scope and limitations 8
Chapter 2. BACKGROUND INFORMATION AND STUDY AREA 9
2.1. General information about Guatemala 9
2.2. The urban area of Guatemala City 11
2.2.1. History 11
2.2.2. The current situation of Guatemala City 13
2.3. Determination of the study area 19
Chapter 3. LITERATURE REVIEW 23
3.1. Background on urban studies 23
3.2. Geographic information systems applied to urban studies 25
Chapter 4. MATERIALS AND METHODS 29
4.1. Work flow diagram 29
4.2. Data acquisition 31
4.2.1 Exploring the area and the urban growth 31
4.2.2. Data acquisition 34
4.2.3. Image classification 49
4.3.3. Accuracy assessment 58
4.4. Urban model 64
4.4.1. Theory 64
4.4.2. Input variables 70
4.4.3. Model performance 74
Chapter 5. RESULTS 76
5.1. Results of image classification 76
5.1.1. Classified and corrected maps 76
5.1.2. Maps reclassified into urban and non urban 82
5.1.3. Accuracy test results 83
5.1.4.Urban area change in the classified images 85
5.2. Urban modeling 86
5.2.1. Model calibration 86
5.2.2. Model validation 96
5.2.3. Urban prediction 110
5.2.4. Prediction of urban change 118
Chapter 6. DISCUSSION 123
6.1. Urban area growth 123
6.2. Area change compared to other urban index 129
6.3. Urban growth related to city features 134
6.4. Potential impacts due to urban growth in the future 134
6.5. Model Assessment 135
6.6. Limitations 136
Chapter 7. CONCLUSIONS 137
Chapter 8. SUGGESTIONS 140
BIBLIOGRAPHY 141
Annexed 1: 2013, Population by municipality in the study area (SEGEPLAN, 2014) 145
Annexed 2: Extension, rehabilitation and paving of roads. (Ministry of comunications infrastructures and housing and general office of roads, 2007) 148
Annexed 3: Expansion and new routes. (Ministry of comunications infrastructures and housing and general office of roads, 2007) 149

參考文獻 Adohinzin, J. B. N., Xu, L., & Yang, F. (2011). Air Quality Assessment and Management Review: Case of Cotonou City (Republic of Benin). 2011 5th International Conference on Bioinformatics and Biomedical Engineering, 1–4. http://doi.org/10.1109/icbbe.2011.5781323
Ai-Ageili, M., Mouhoub, M., & Piwowar, J. (2013). Integrating remote sensing, GIS and dynamic models: Cellular automata approach for the simulation of urban growth for the city of Montreal. In Canadian Conference on Electrical and Computer Engineering. Regina, SK. http://doi.org/10.1109/CCECE.2013.6567844
AVANCSO (Guatemala’s association for the progress of social sience). (n.d.). Asociacion para el avance de las ciencias sociales en Guatemala. Retrieved May 10, 2015, from http://avancso.org.gt/areas-de-estudio/area-de-estudios-sociourbanos/
Banco de Guatemala. (2014). Guatemala en Cifras. Retrieved from www.banguat.gob.gt
Banco de Guatrmala. (n.d.). Statistical Bulletin. Guatemala. Retrieved from http://www.banguat.gob.gt/estaeco/boletin/envolver.asp?karchivo=boescu51
Bonhomme, V., Castets, M., Morel, J., & Gaucherel, C. (2015). Introducing the vectorial Kappa: An index to quantify congruence between vectorial mosaics. Ecological Indicators, 57, 96–99. http://doi.org/10.1016/j.ecolind.2015.04.007
Bravo, M. A. (2007). Brief characterization of some recent changes in Guatemala’s capital city and urban problems associated with it. USAC. Retrieved from http://ceur.usac.edu.gt/pdf/Foro_Alcades_2008-2012.pdf
Bryant, R., Moran, M. S., McElroy, S., Holifield, C., Thome, K., & Miura, T. (2002). Data continuity of Landsat-4 TM, Landsat-5 TM, Landsat-7 ETM+, and Advanced Land Imager (ALI) sensors. IEEE International Geoscience and Remote Sensing Symposium, 1(C), 584–586. http://doi.org/10.1109/IGARSS.2002.1025112
Carleton College Sience Education Resource Center. (2013). What is a model? Retrieved June 1, 2015, from https://serc.carleton.edu/introgeo/models/WhatIsAModel.html
Chang, L. (2014). 結合羅吉斯迴歸分析與細胞自動機預測紅樹林變遷之研究. National Central University.
Chen, Y., Li, X., Liu, X., & Ai, B. (2013). Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. International Journal of Geographical Information Science, 28(2), 234–255. http://doi.org/10.1080/13658816.2013.831868
CIA World Factbook. (2014). Guatemala. Retrieved March 13, 2014, from https://www.cia.gov/library/publications/the-world-factbook/fields/2212.html#gt
Cohen, B. (2004). Urban growth in developing countries: A review of current trends and a caution regarding existing forecasts. World Development, 32(1), 23–51. http://doi.org/10.1016/j.worlddev.2003.04.008
Cohen, B. (2006). Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technology in Society, 28(1-2), 63–80. http://doi.org/10.1016/j.techsoc.2005.10.005
Ellis, E. (2013). Land-use and land-cover change. Retrieved July 10, 2015, from http://www.eoearth.org/view/article/154143/
ESRI. (2015). What is GIS? Retrieved May 21, 2015, from http://www.esri.com/what-is-gis
FAO/WFP. (2010). Crop and Food Security Assessment Mission to Guatemala. Retrieved from http://www.fao.org/docrep/012/ak344e/ak344e00.pdf
Goetzke, R., Braun, M., Thamm, H.-P., & Menz, G. (2008). MONITORING AND MODELING URBAN LAND-USE CHANGE WITH MULTITEMPORAL SATELLITE DATA. In Geoscience and Remote Sensing Symposium (pp. 510–513). Boston, MA: Geoscience and Remote Sensing Symposium. http://doi.org/10.1109/IGARSS.2008.4779770
Guatemala’s Ministry of Finance. (n.d.). Financial Situation of the Central Administration 1995-2014. Guatemala. Retrieved from http://www.minfin.gob.gt/archivos/estadisticas/doc2.pdf
Herold, M., Goldstein, N., & Clarke, K. (2003). The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sensing of Environment, 86(3), 286–302. http://doi.org/10.1016/S0034-4257(03)00075-0
Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 4(23), 725–749. http://doi.org/10.1080/01431160110040323
Ibañez, M. (1778). Plano de la Nueva Guatemala de la Asuncion. Retrieved from http://www.uvg.edu.gt/publicaciones/revista/volumenes/numero-18/REVISTA_18_UVG_pags_15-35.pdf
Instituto Nacional de Estadística. (2013). Caracterización estadística República de Guatemala 2012, 76. Retrieved from http://www.ine.gob.gt/sistema/uploads/2014/02/26/5eTCcFlHErnaNVeUmm3iabXHaKgXtw0C.pdf
Li, C., Wang, J., Wang, L., Hu, L., & Gong, P. (2014). Comparison of classification algorithms and training sample sizes in urban land classification with landsat thematic mapper imagery. Remote Sensing, 6(2), 964–983. http://doi.org/10.3390/rs6020964
Lincon Institute. (n.d.). Atlas of Urban Expansion. Retrieved March 20, 2014, from http://www.lincolninst.edu/subcenters/atlas-urban-expansion/google-earth-data.aspx
Liu, Q., Guo, Y., & Liu, G. (2014). Classification of Landsat 8 OLI Image Using Support Vector Machine With Tasseled Cap Transformation, (2013), 665–669.
Lowell, K., Reddy, S., & Farmer, E. (2014). DATA AND SAMPLING ISSUES ASSOCIATED WITH ACCURACY ASSESSMENT OF LANDCOVER CHANGE MAPS PRODUCED FROM MULTI-TEMPORAL IMAGE CLASSIFICATION Coop . Research Centre for Spatial Info ., Univ . of Melbourne , AUSTRALIA klowell@crcsi.com.au Geospatial Analysis Uni, 4235–4238.
Lu, D., & Weng, Q. (2006). Use of impervious surface in urban land-use classification. Remote Sensing of Environment, 102(1-2), 146–160. http://doi.org/10.1016/j.rse.2006.02.010
Lu, L., He, Y., Zhang, X., Li, Q., & Liu, G. (2013). Land use / land cover Change Analysis for Li River Basin , China with Multitemporal Landsat Data, 418–421.
Maurer, J. (2001). Overview of NASA’s Terra satellite. Retrieved September 7, 2015, from http://www2.hawaii.edu/~jmaurer/terra/
Ministry of comunications infrastructures and housing and general office of roads. (2007). Reformulacion y actualizacion del plan de desarrollo vial, periodico 2008-2017. Guatemala.
Miyazaki, H., Shao, X., Iwao, K., & Shibasaki, R. (2013). An Automated Method for Global Urban Area Mapping by Integrating ASTER Satellite Images and GIS Data. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 6(2), 1004–1019.
Nielsen, L. (2013). How to Classify Countries Based on Their Level of Development. Social Indicators Research, 114(3), 1087–1107. http://doi.org/10.1007/s11205-012-0191-9
Olorunfemi, J. F. (1983). Monitoring urban land use in developing countries—an aerial photographic approach. Environment International, 9(1), 27–32. http://doi.org/10.1016/0160-4120(83)90111-3
Organisazion Panoamericana de la Salud. (2013). Estrategia de Cooperacion en el Pais 2013-2017. Guatemala. Retrieved from http://www.paho.org/gut/index.php?option=com_docman&task=doc_download&gid=606&Itemid=249
Organizmo Judicial de Guatemala. (2003). Guatemala: Estimaciones de la Población total por departamento. Período 2003-2011. Guatemala. Retrieved from http://www.oj.gob.gt/estadisticaj/files/poblacion-total-por-departamento1.pdf
Prensa Libre. (2015). Guatemala: Activos Bancarios Aumentan 8,95% EN 2014. Retrieved June 10, 2015, from http://www.revistasumma.com/guatemala-activos-bancarios-aumentan-895-en-2014/
SEGEPLAN. (n.d.). IDE. Retrieved April 10, 2015, from http://www.segeplan.gob.gt/2.0/index.php?option=com_wrapper&view=wrapper&Itemid=269
SEGEPLAN. (2012). K’atun Nuestra Guatemala 2032 Construccion del Plan Nacional de Desarrollo.
SEGEPLAN. (2014a). Plan Nacional de Desarrollo K’atun Nuestra Guatemala 2032. Guatemala. Retrieved from http://katunguatemala2032.com/index.php/descargas
SEGEPLAN. (2014b). Use of Satellite images in the framework of K’atun National Planning Strategy. Guatemala.
Shlomo, A., Parent, J., Civco, D. L., Blei, A., & Potere, D. (2011). The dimensions of global urban expansion: Estimates and projections for all countries, 2000-2050. Progress in Planning, 75(2), 53–107. http://doi.org/10.1016/j.progress.2011.04.001
Shlomo, A., Sheppard, S., & Civco, D. (2005). The Dynamics of Global Urban Expansion. Washington. Retrieved from http://sollyangel.com/wp-content/uploads/2013/11/2005-The-Dynamics-of-Global-Urban-Expansion.pdf
Smithsonian Magazine. (2014). The Unlikely History of the Origins of Modern Maps. Retrieved May 21, 2015, from http://www.smithsonianmag.com/history/unlikely-history-origins-modern-maps-180951617/?no-ist
Sudhira, H. S., Ramachandra, T. V., & Jagadish, K. S. (2004). Urban sprawl: Metrics, dynamics and modelling using GIS. International Journal of Applied Earth Observation and Geoinformation, 5(1), 29–39. http://doi.org/10.1016/j.jag.2003.08.002
Talal, A.-A. (2007). Monitoring and Modeling Urban Expansion Using GIS & RS : In Urban Remote Sensing Joint Event (pp. 3–7). Paris: Urban Remote Sensing Joint Event. http://doi.org/10.1109/URS.2007.371790
Touray, A. (2014). Multi-temporal Land-Cover Monitoring of theWestern Gambia Using Remote Sensing. National Central University of Taiwan.
Turker, M., & Koc San, D. (2010). Building Detection From Pan-Sharpened Ikonos Imagery Through Support Vector Machines Classification. International Archives of the Pjotogrammetry, Remote Senising and Spatial Information Science, XXXVIII, 841–846.
U.S. Geological Survey. (2014). Earth Explorer.
UN-HABITAT. (n.d.). State of the World’s Cities 2006/7. Retrieved June 10, 2015, from http://ww2.unhabitat.org/mediacentre/documents/sowcr2006/SOWCR 5.pdf
Valladares, C. E. (2003). Urban Slums Reports: The case of Guatemala City. Retrieved June 10, 2015, from http://www.ucl.ac.uk/dpu-projects/Global_Report/pdfs/Guatemala.pdf
Wang, Z., & Koutsopoulos, H. (2011). CALIBRATION OF URBAN RAIL SIMULATION MODELS: A METHODOLOGY USING SPSA ALGORITHM. In 2011 Winter Simulation Conference (pp. 3699–3709). Phoenix, AZ. http://doi.org/10.1109/WSC.2011.6148063
Watanachaturaporn, P., Arora, M. K., & Varshney, P. K. (2008). Multisource Classification Using Support Vector Machines : An Empirical Comparison with Decision Tree and Neural Network Classifiers, 74(2), 239–246.
WHO. (2014). Global Health Observatory (GHO) data. Retrieved June 1, 2015, from http://www.who.int/gho/urban_health/en/
Xu, H. (2007). Extraction of urban built-up land features from Landsat imagery using a thematic-oriented index combination technique. Photogrammetric Engineering and Remote Sensing, 73(12), 1381–1391. Retrieved from http://asprs.org/a/publications/pers/2007journal/december/2007_dec_1381-1391.pdf

指導教授 陳繼藩 姜壽浩(Chi-Farn Chen Ph.D. Shou-Hao Chiang Ph.D.) 審核日期 2015-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明