博碩士論文 102350612 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:54.224.210.130
姓名 杜姝任(Dolgorsuren)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 應用最大熵法於蒙古山區進行森林樹種分類
(The Classification of Forest Tree Species Using Maximum Entropy Method in Mongolia)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 森林是重要的生態系統,提供生物圈豐富的自然資源。森林調查能持續協助政府對
森林發展進行決策,例如:變更、改進和管理。森林的田野調查工作相當繁重且耗時,需
要大量的人力資源和成本,特別是在大範圍的山區。具可信度的森林調查結果能提供人們
準確且即時的資訊,使得森林規劃更有效率、更完整。近年來,遙測技術被應用於大規模
森林調查之應用上,故本研究欲以遙測資料產製森林調查圖,並具有森林樹種的屬性資料。
本研究使用最大熵法(Maximum Entropy Method, MaxEnt)分類庫蘇古爾省(Huwsgul)
額爾德尼布勒甘縣的森林樹種。研究區位於蒙古北部高山地區,森林面積共4,230.1 平方
公里,占額爾德尼布勒甘縣總面積約85%,本研究測試資料為2011 年7 月的Landsat-5 衛
星影像、空間解析度30 公尺的數值高程模型(Digital Elevation Model, DEM),以及森林組
織公司提供的森林樹種調查圖。本研究使用Landsat-5 衛星影像和數值高程模型,以最大
熵法分類森林樹種和其分布,並進行三項測試:(1)以Landsat 多波段影像分類森林樹種;
(2)以數值高程模型衍生的地理變數分類森林樹種;(3)整合Landsat 多波段影像和地理變數
分類森林樹種。並將測試成果和森林樹種調查圖比較,進行精度評估。
研究成果顯示,僅用多波段影像分類六個樹種的總體精度為69%,Kappa 值為0.35,
僅用地理資料分類六個樹種的總體精度為65%,Kappa 值為0.28,而整合兩種資料後的分
類總體精度為80%,Kappa 值為0.48。根據上述成果比較,整合後的多波段影像資料和地
理資料,能有效提升森林樹種分類的精度。
摘要(英) Forest is a very important ecosystem and natural resource for living things. Based on forest
inventories, government is able to make decisions to converse, improve and manage forests in a
sustainable way. Field work for forestry investigation is difficult and time consuming, because it
needs intensive physical labor and costs, especially surveying in a widely and remotely
mountainous area. A reliable forest inventory can give us more accurate and timely information to
develop new and efficient approaches of forest management. The remote sensing technology has
been recently used for forest investigation for large scale. To produce an informative forest
inventory, forest attributes, including tree species are necessarily investigated.
This research focuses on the classification of forest tree species in Erdenebulgan county,
Huwsgul province, Mongolia, using Maximum entropy method. The study area covers a forest area
of 4230.1 km2 which is almost 85% of total area of Erdenebulgan county and located in a high
mountain region in northern Mongolia. For this study, Landsat 5 satellite imagery taken in July,
2011 and a 30 m DEM (Digital Elevation Model) were acquired to perform image classification.
The forest tree species inventory map collected from Forest Organization Company. Landsat
images and DEM were processed for tree species classification, and a maximum entropy model,
MaxEnt, for predicting the distribution of tree species was applied in this study. This study has
tried three different experiments: (1) spectral bands from Landsat were used for free species
classification; (2) topographical variables were used for tree species classification; and (3) tree
species classification generated from both spectral bands and topographical data. All experimental
results were compared with the tree species inventory to access the mapping accuracy.
The result shows that six different tree species were classified. The overall accuracy from only
spectral bands is 69 % and kappa coefficient is 0.35, and the result from only topographical data
shows 65 % overall accuracy and 0.28 kappa coefficient. Meanwhile, the overall accuracy from
integration of spectral bands and topographical data is 80 % with kappa coefficient of 0.48,
indicating that the integration of topographic data and image data can improve the classification of
tree species in this study area.
關鍵字(中) ★ 衛星影像
★ 地理資料
★ 森林樹種
★ 最大熵法
★ 蒙古
關鍵字(英) ★ Satellite imagery
★ Topographical data
★ Forest tree species
★ MaxEnt
★ Mongolia
論文目次 TABLE OF CONTENTS
CHINESE ABSTRACT...…………………………………………………………………..…….i
ABSTRACT ……………...………………………………………………………………………ii
ACKNOWLEGGEMENTS …………………………………………………………………….iii
TABLE CONTENTS …………………………………………………………………………....iv
LIST OF FIGURES ………………………………………………………………………….....vii
LIST OF TABLES …………………………………………………………………………… viii
ACRONYMS …………………………………………………………………………………….ix
CHAPTER 1 INTRODUCTION
1.1 Background …………………………………………………………………………………....1
1.2 Research Questions …………………………………………………….……………………...4
1.3 Research Objectives ………………………………………………………………………......5
CHAPTER 2 LITERATURE REVIEW ……………………………………………………......6
2.1 Tree species classification using remotely-sensed data ………………………………...…......6
2.2 Tree species classification methods ………………………………...………………………... 8
2.3 Topographical variables for tree species classification ………………………………………..9
2.4 Forest mapping in Mongolia …………………………………………………………...…….10
CHAPTER 3 BACKGROUND INFORMATION ……………………….…………………...12
3.1 General Information of Mongolia ……………………………………………………………12
3.2 The Forest of Mongolia..……………………………………………………………………...18
3.2.1 Forest type, Cover and Condition ………………………………………….…………….. 19
v
3.2.2 Forest legislation and policy framework.…………………………………………………. 20
3.2.3 Priorities and Strategies..…………………………………………………………………...21
CHAPTER 4 STUDY AREA AND MATERIALS …………………………………………...24
4.1 The Study Area ……………………………………………………………………………….24
4.1.1 Geographic Locations …………………………………………………………………….. 24
4.1.2 Climate ……………………………………………………………………………………..25
4.1.3 Land Use Pattern …………………………………………………………………………...25
4.2 Materials ……………………………………………………………………………………. 26
4.3 Data Acquisition …………………………………………………………………………......27
4.3.1 Satellite Data Acquisitions …………………………………………………………………27
4.3.2 Digital Elevation Model Acquisitions …………………………………………………….. 29
4.3.3 Forest Tree Species Inventory …………………………………………………………….. 30
CHAPTER 5 METHODOLOGY ……………………………………………………………...32
5.1 Brief Information about Maximum Entropy Modeling …………………………………….. 33
5.1.1 The Principle ……………………………………………………………………..………. 34
5.2 Producing Data for “Sample” section ………………………………………………………. 37
5.2.1 Reference Data Processing…………………………………………………………………37
5.3 Producing Data for “Environmental Layer” section …………………………………………38
5.3.1 Satellite Image Processing ……………………………………………………………… 38
5.3.1.1 Extract by Study Area ………………………………………………………………….. 38
5.3.1.2 Neighborhood Analysis ………………………………………………………………… 39
5.3.1.3 Zonal Statistic …………………………………………………………………………. 39
5.3.1.4 Converting Raster to ASCII ………………………………………………………..........40
5.3.2 Digital Elevation Model Processing …………………………………………………….. 40
5.3.2.1 Terrain Variables Generating ………………………………………………………..... 40
5.3.2.2 Neighborhood Analysis .…….…...……………………………………………………....43
5.3.2.3 Study Area Extraction …………………………………………………………………43
vi
5.3.2.4 Zonal Statistic ……………………………………………………………………………43
5.3.2.5 Converting raster to ASCII……………………………………………………………… 43
5.4 Predicting The Distribution of Tree species………………………………………………… 44
5.4.1 Experiment 1 …………………………………………………………………………….. 45
5.4.2 Experiment 2 ……………………………………………………………………………… 46
5.4.3 Experiment 3 ……………………………………………………………………………… 46
5.5 MaxEnt output ……………………………………………………………………………….47
CHAPTER 6 RESULTS AND DISCUSSIONS ………………………………………………48
6.1 Classification Results and Accuracy Assessment ………………………………………….. 48
6.2 Experiment 1: Forest Tree Species Classification Map using Landsat Image …………….. 50
6.3 Experiment 2: Forest Tree Species Classification Map using Topographical Data ……….. 53
6.4 Experiment 3: Forest Tree Species Classification Map using both Landsat Image and
topographical data…………………………………………………………………………….56
6.5 Discussion of Classification Results ……………………………………………………….. 59
CHAPTER 7 CONCLUSION AND RECOMMENDATIONS ………………………….... 61
7.1 Conclusions .………………………………………………………………………………. 61
7.2 Recommendations ………………………………………………………………………… 62
REFERENCES ………………………………………………………………………………. 64
參考文獻 Adiyasuren, Ts. (1998). Environment and Development issues in Mongolia. Ulaanbaatar,
Mongolia: S.N press.
Ali, A.T., & Suresh, C. R. (2010). Land Cover Classification and Forest Change Analysis, Using
Satellite Imagery - A Case Study in Dehdez Area of Zagros Mountain in Iran. Journal of
Geographic Information system, 3, 1-11.
Amarsaikhan, D., Saandar, M., Battsengel, V. & Amarjargal, Sh. (2012). Forest resources study in
Mongolia using advanced spatial technologies. International Archives of the Photogrammetry,
RS and Spatial Information Sciences, 7, XXII ISPRS Congress, Melbourne, Australia.
Austin, M., (2002). Spatial prediction of species distribution: an interface between ecological
theory and statistical modelling. Ecological Modeling, 157, 101–118.
Banzragch, N., Scott, G., & Clyde, E.G. (2006). Trends in extreme daily precipitation and
temperature near lake Hövsgöl, Mongolia. International Journal of Climatology, 27, 341-347.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Carleer, A., & Wolff, E. (2004). Exploitation of Very High Resolution Satellite Data for Tree
Species Identification. Photogrammetric Engineering and Remote Sensing, 70(1), 135-140.
Charles, T. S & Jeffrey, H. G. (2002). Encyclopedia of Environmetrics, volume 2. Ed by Abdel, H.
E., &Walter, W. P. Forest inventory 2, 814-820.
Chimidnyam, D. (2010). Global Forest Resources Assessment, Mongolia, Country progress report:
Recommendation for harmonization and standardization of MAR terms. Ulaanbaatar,
Mongolia.
Congalton, R.G. (1995). A Review of Assessing the Accuracy of Classifications of
Remotely Sensed Data. Remote Sensing of Environment, 37, 35-46.
Congalton, R.G. & Green, K. (1999). Assessing the Accuracy of Remotely Sensed Data:
Principles and Practices, Lewis Publishers, Florida.
Congalton, R.G., Oderwald, R.G., & Mead, R.A., (1983). Assessing Landsat Classification
Accuracy Using Discrete Multivariate Analysis Statistical Techniques. Photogrammetric
Engineering and Remote Sensing, 49, 1671-1678.
Corsi, F., De Leeuw, J., Skidmore, A. (2000). Modeling species distribution with GIS. In: Boitani,
L., Fuller, T. (Eds.). Research Techniques in Animal Ecology: Controversies and
consequences, 389–434. New York, Columbia University Press.
65
Duda, R.O., Hart, P.E., & Stork, D.G. (2000). Pattern Classification (2nd ed). New York, USA.
Dud´ık, M., Phillips, S.J., Schapire, R.E. (2004). Performance guarantees for regularized maximum
entropy density estimation. In: Proceedings of the 17th Annual Conference on Computational
Learning Theory, 655– 662. New York, ACM Press.
Engler, R., Guisan, A., & Rechsteiner, L. (2004). An improved approach for predicting the
distribution of rare and endangered species from occurrence and pseudo-absence data. Journal
of Applied Ecology, 41, 263–274.
Fallah, A., Kalbi, S., & Shataee, S. (2013). Forest Stand Types Classification Using Tree-Based
Algorithms and SPOT-HRG Data. International Journal of Environmental Resources
Research, 1, 263-278.
Forest Law of Mongolia (FLM). (1995). Ulaanbaatar, Mongolia.
Frank, T.D. (1988). Mapping dominant vegetation communities in the Colorado Rocky Mountain
Front Range with Landsat Thematic Mapper and digital terrain data. Photogrammetric
Engineering and Remote Sensing, 54, 1727–1734.
Franklin, J. (1995). Predicting the distribution of shrub species in southern California from climate
and terrain-derived variables. Journal of vegetation Science, 9, 733- 748.
Ganbold, D., & Haliun D. (2000). Facts about Mongolia. Ulaanbaatar, Mongolia: Admon press.
Giles, M.F, Peter, M.A, Peter, W.G, Neil, A.R, & Colleen, K.K. (2004). Identification of specific
tree species in ancient semi-natural woodland from digital aerial sensor imagery. Ecological
Applications, 15, 1233–1244.
Guo, L., Chehata, N., Mallet, C., & Boukir, S. (2011). Relevance of airborne lidar and multispectral
image data for urban scene classification using Random Forests. ISPRS Journal of
Photogrammetry and Remote Sensing, 66, 56–66.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction (2nd ed). New York, USA: Springer.
Hopkins, P.F., Maclean, A.L., & Lillesand, T.M. (1988). Assessment of Thematic Mapper imagery
for forestry applications under Lake States conditions. Photogrammetric Engineering and
Remote Sensing, 54(1), 61-68.
Hudak, A.T., Strand, E.K., Vierling, L.A., Byrne, J.C., Eitel, J.U.H., Martinuzzi, S., &
Falkowski, M.J. (2012). Quantifying aboveground forest carbon pools and fluxes from repeat
LiDARSurveys. Remote Sensing of Environment, 123, 25–40.
66
Gerelmaa, B. (2011). Community Forest Development in Mongolia. Country Reports for APFNet’s
Workshop on Community Forestry Development in the Context of Climate Change, Kunming
China, 24-48.
Hughes, G. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transaction on
Information Theory, 14, 55–63.
Jaynes, E.T. (1957). Information theory and statistical mechanics. The Physical Review, 106, 620–
630.
Irons, J.R., Markham, B.L., Nelson, R.F., Toll, D.L., & Williams, D.L. (1985). The effects of
spatial resolution on the classification of Thematic Mapper data. International Journal of
Remote Sensing, 6(8), 1385-1403.
Juwairia, M., Umar, K., & Mahboob, R. (2002). Forest tree species classification using
multispectral satellite imageries. International Journal of Remote Sensing, 26, 217–222.
Law of Mongolia on Land /Revised version/. (2002) Ulaanbaatar, Mongolia.
Lawrence, R.L., Wood, S.D., & Sheley, R.L. (2006). Mapping invasive plants using hyperspectral
imagery and Breiman Cutler classifications Remote Sensing of Environment, 100, 356–362.
Lennartz, S.P., & Congalton, R.G. (2004). Classifying and mapping forest cover types using Ikonos
imagery in the Northeastern United State. Proceedings of the Annual Meeting of American
Society of Photogrammetry and Remote Sensing, Denver.
Marco, P. (2007). Brief on National forest inventory, Mongolia. Forest Resources Development
Service.
Markus, I., Clement, A., & Tatjana, K. (2012). Tree Species Classification with Random Forest
Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sensing, 4,
2661-2693.
Martin, M. E., Newman, S.D., Aber, J.D., & Congalton, R.G. (1998). Determining Forest Species
Composition Using High Spectral Resolution Remote Sensing Data. Remote Sensing of
Environment, 65, 249–254.
Moore, M.M., & Bauer, M.E. (1990). Classification of forest vegetation in North-Central
Minnesota using Landsat Multispectral Scanner and Thematic Mapper data. Forest Science,
36(2), 330-342.
67
Mühlenberg, M., Appelfelder, J., Hoffmann, H., Ayush, E., & Wilson, K.J. (2012). Structure of the
montane taiga forests of West Khentii, Northern Mongolia. Journal of forest science, 58, 45-
56.
Nicholas, C., John, D., & Michael, M. (2004). Mongolia Forestry Sector Review. World Bank,
http://siteresources.worldbank.org/INTMONGOLIA/Resources/eng_version.pdf.
Nyamaa, M. (2001). Khövsgöl province guidebook, 219. Ulaanbaatar, Mongolia.
Nyamjav, B. (2007). The Forest Fire Situation in Mongolia. International Forest Fire News, 36,
46-66.
Phillips, S.J., Robert, P. A., & Robert, E. S. (2006). Maximum entropy modeling of species
geographic distributions. Ecological Modelling, 190, 231-259.
Punsalmaa, B. (2006). Climate Change Vulnerability and Adaptation in the Livestock sector of
Mongolia, A Final Report Submitted to Assessments of Impacts and Adaptations to Climate
Change (AIACC), Project No. AS 06.
Schriever, J.R., & Congalton, R.G. (1995). Evaluating seasonal variability as an aid to cover-type
mapping from Landsat Thematic Mapper data in the Northeast. Photogrammetric
Engineering and Remote Sensing, 61(3), 321- 327.
Shannon, C.E. (1948). A mathematical theory of communication. The Bell System Technical
Journal, 27, 379–423, 623–656.
Skidmore, A. K. (1989). An expert system classifies eucalypt types using Thematic Mapper data
and a digital terrain model. Photogrammetric Engineering and Remote Sensing, 55, 1449–
1464.
Stumpf, A., & Kerle, N. (2011). Object-oriented mapping of landslides using Random Forests.
Remote Sensing of Environment, 115, 2564–2577.
Suvdantsetseg, B., Tsolmon, R., & Fukui, H. (2012). Saxaul forest area determination by remote
sensing in Mongolia’s gobi desert. International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 37, 1081-1086.
Tsogtbaatar, J. (2007). Forest Policy Development in Mongolia. Geoecology Institute, Mongolian
Academy Sciences, Ulaanbaatar, Mongolia.
Tu, C. H., Lo, N. J., Chang, W., & Haung, K. Y. (2012). Evaluating the novel method on species
distribution modeling in complex forest. International Archives of the Photogrammetry, Remote
68
Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012 XXII ISPRS Congress,
Melbourne, Australia.
World Population Review. (2015). Mongolia Population 2015.
http://worldpopulationreview.com/countries/mongolia-population/
Ykhanbai, H. (2004). Final Technical Report of study project on: “Sustainable
Management of Common Natural Resources in Mongolia”. Ulaanbaatar, Mongolia.
Zhang, Z., & Liu, X. (2012). Terrain and canopy surface modelling from LiDAR data for tree
species classification. In: Symposium GIS Ostrava 2012: Surface Models for Geosciences,
Ostrava, Czech Republic.
Zhang, Z., Liu, X., & Wendy, W. (2012) Object-based image analysis for forest species
指導教授 陳繼藩 姜壽浩(Chi-Farn Chen Shou Hao Chiang) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明