博碩士論文 102353026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.188.241.82
姓名 胡珪渝(Guei-Yu Hwu)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 天然氣火力發電廠氣渦輪機燃燒室最大火焰溫度評估及熱功轉換應用
(Maximum Combustion Flame Temperature Evaluation and Thermal Power Conversion application in Natural Gas Power Plant)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 天然氣複循環發電方式乃是當前發電方式主流之一,但仍有燃料成本較高,氮氧化物排放抑低等問題,希望透過實務面之探討,利用空燃比方法推導燃燒器火焰溫度作為氣渦輪機進口溫度來計算熱效率,並與氣渦輪機功率輸出方法計算熱效率彼此作比較,找出設備性能評估診斷方法。
本文參考熱力學原理之應用以第一定律熱功平衡、第二定律熵增定理及天然氣成份經燃燒後擷取煙氣排放過剩氧含量推算空燃比(AFR),以化學平衡反應式推導氣渦輪機燃燒器最大火焰溫度作為氣渦輪機進氣溫度(TIT),並結合氣渦輪機熱力循環之運轉實例,以氣渦輪機進氣溫度(TIT) 計算熱效率及評估設備性能提供實務方法,同時以空燃比原理計算燃燒器火焰溫度,提供可應用之計算模式,也對氮氧化物排放與空燃比關係提出調整建議。
經實驗501F型GT空燃比(AFRmass)約於46及501G型GT約於42時氣渦輪機熱效率最佳。且提升燃料及燃燒空氣溫度對熱效率及氮氧化物排放濃度之降低都有極佳助益,而提升燃燒空氣溫度功能性遠大於提升燃料溫度。
利用空燃比來計算燃燒器最大火焰溫度做為TIT,以進一步評估氣渦輪機作功能力,可以獲得很高準確性,若再與氣渦輪機實際出力熱轉換效率之差異性比較,更可以做為設備熱元件或組裝時缺陷診察判斷之工具,以進一步改善提出方法。
摘要(英)
Natural gas combined cycle power generation is one of the current power generation mainstream, but there are still higher fuel costs, nitrogen oxides emission reduction and other issues. The practical aspect of use the air-fuel ratio (AFR) method to derive the combustion flame temperature and that can be calculated as the function of gas turbine inlet temperature and thermal efficiency. In addition, we also compare with power output conversion thermal efficiency method. They can be correlated with the equipment performance and as a diagnostic method.
In this thesis, the application of thermodynamics principle to the first law of thermal balance, the second law entropy increase theorem and natural gas components after combustion of flue gas emissions from excess oxygen are adopted to calculate the air-fuel ratio(AFR) and used to chemical equilibrium reaction derived gas turbine inlet temperature(TIT), combined with the operation example of the gas turbine thermal cycle, to calculate the Brayton cycle efficiency of the gas turbine and to evaluate the performance of the equipment. At the same time, the air-fuel ratio is calculated as a function of the combustion flame temperature, to provide the application of the calculation model and the relationship between nitrogen oxide emissions and AFR adjustment is proposed.
Experimental results showed that 501F type GT AFR(kg) is about 46 and 501G GT is about 42 when the gas turbine thermal efficiency is the optimal. And the promotion of fuel and combustion air temperature on the thermal efficiency and nitrogen oxide emission concentration is very promising, and enhancement of the combustion air temperature function has greater impact than that of the fuel temperature.
The maximum flame temperature of the combustor is calculated by using the AFR as a function of TIT to further evaluate the working capacity of the gas turbine, and it is highly accurate (favorable) to compare with the actual power output efficiency of the gas turbine. Furthermore, TIT can be used as the diagnostic tool for the early monitoring of defective components or assembly of the power plant.
Keywords:Natural gas combined cycle power generation , NOx, Air-fuel ratio (AFR), Gas turbine inlet temperature (TIT), Combustor, Flame temperature
關鍵字(中) ★ 天然氣複循環發電
★ 氮氧化物
★ 空燃比(AFR)
★ 氣渦輪機進氣溫度(TIT)
★ 燃燒器
★ 火焰溫度
關鍵字(英)
論文目次
目錄
中文提要……………………………………………………………… iv
英文提要……………………………………………………………… v
誌謝…………………………………………………………………… vii
目錄…………………………………………………………………… viii
圖目錄………………………………………………………………… xi
表目錄………………………………………………………………… xiii
符號說明……………………………………………………………… xiv
第一章 緒論……………………………………………………… 1
1-1 前言……………………………………………………… 1
1-2 研究動機與目的………………………………………… 1
1-3 文獻回顧………………………………………………… 3
1-3-1 氣渦輪機之性能測試………………………………… 3
1-3-2 可用功(exergy)……………………………………… 6
1-3-3 化學能平衡反應與燃燒器最大火焰溫度…………… 7
第二章 火力發電廠氣渦輪機組熱力循環應用………………… 11
2-1 火力發電廠氣渦輪機組熱力循環應用………………… 11
2-1-1 熱力學第一定律基本概念…………………………… 11
2-1-2 熱力學第二定律基本概念…………………………… 13
2-1-3 熵增原理……………………………………………… 14
2-2 氣渦輪機作功原理……………………………………… 18
2-2-1 氣渦輪機及空壓機熱力循環方式及第一定律效率… 19
2-2-2 氣渦輪機第一定律效率驗證………………………… 25
2-2-3 可利用性及第二定律效率…………………………… 29
第三章 以化學反應平衡模式計算燃燒器最大火焰溫度之實證 34
3-1 空氣-燃料比基本觀念………………………………… 34
3-2 燃燒反應空燃比驗證…………………………………… 37
3-3 氣體燃料之形成焓……………………………………… 38
3-4 反應熱及燃燒焓………………………………………… 39
3-5 氣體燃料燃燒反應之第一定律………………………… 41
3-6 絕熱火焰溫度…………………………………………… 42
3-7 燃燒器火焰溫度模式建立……………………………… 44
3-8 燃燒反應的第二定律分析……………………………… 50
3-9 小結論…………………………………………………… 53
第四章 實務應用與驗證………………………………………… 55
4-1 以熱功轉換及氣渦輪機火焰溫度計算效率之比較…… 55
4-2 燃燒器火焰溫度與氮氧化物排放之關係……………… 60
第五章 結論……………………………………………………… 65
參考文獻 …………………………………………………………… 68
附錄A………………………………………………………………… 72
參考文獻








[1]Thamir K., Ibrahim , M. M. Rahman, “Effect of Compression Ratio on Performance of Combined Cycle Gas Turbine”, International Journal of Energy Engineering 2012.2(1):9-14, pp. 10, Scientific & Academic Publishing, 2012.
[2]ASME PERFORMANCE TEST CODE COMMITTEE 22 GAS TURBINES,“ASME PTC 22-2005”, Revision of ASME PTC 22-1997(R2003), THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS, 2006.
[3]Muammer Özkan, “A Comparative Study on Energy and Exergy Analyses of a CI Engine Performed with Different Multiple Injection Strategies at Part Load: Effect of Injection Pressure” ,IC Engines Laboratory, Department of Mechanical Engineering, Yıldız Technical University, Marc A. Rosen, 12 January 2015.
[4]C.D. Rakopoulos, D.C. Kyritsis, “Comparative second-law analysis of internal combustion engine operation for methane, methanol, and dodecane fuels”, Energy 26 (2001) 705–722.
[5]Chintala, Venkateswarlu, Subramanian, K.A., “Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis”, Energy 67 (2014) 162-175, Elsevier Ltd, 2014.
[6]Ashwani K. Gupta., “FLAME CHARACTERISTICS AND CHALLENGES WITH HIGH TEMPERATURE AIR COMBUSTION”, University of Maryland, Department of Mechanical Engineering.
[7]Fernandorueda Rueda Martínez, et al.,“ Evaluation of the Gas Turbine Inlet Temperature with Relation to the Excess Air”, Energy and Power Engineering, 2011, 3, pp. 517-524.
[8]M. M. Rahman, et al., “Thermodynamic performance analysis of gas-turbine power-plant”, International Journal of the Physical Sciences Vol. 6(14), pp. 3539-3550, 18 July, 2011.
[9]CLAUS BORGNAKKE, RICHARD E. SONNTAG, FUNDAMENTALS OF THERMODYNAMICS, 林正仁等編譯, 7th, 熱力學, pp.5-1-10-23, 全華圖書股份有限公司。
[10]網路資料:Heat and Thermodynamics/Heat Engines, 取自http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/heaeng.html#c1
[11]網路資料:Brayton Cycle:Ideal Cycle for Gas Turbine Engineers, 取自http://slideplayer.com/slide/3872646/.
[12]Prof. Z. S. Spakovszky,“ Thermodynamics and Propulsion”, Douglas Quattrochi translation, the LaTeX2HTML translator Version 2002-2-1.
[13] B. G. Kyle,“ Chemical and Process Thermodynamics (Englewood Cliffs, NJ: Prentice-Hall, 1984) Table A-2,” and “Dahtarn Power Plant O&M , Heat Balance”, and CLAUS BORGNAKKE and RICHARD E. SONNTAG , Thermodynamics Appendix A.5、A7.1、A.8.
[14]CLAUS BORGNAKKE, RICHARD E. SONNTAG, FUNDAMENTALS OF THERMODYNAMICS, 林正仁等編譯, 7th, 熱力學, pp.11-1-15-33, 全華圖書股份有限公司。
[15]吉興工程公司, “大潭發電廠501F 2號機FAT效率試驗見證報告”, 2010,10.
[16]MHPS, “501F GT O&M heat balance table”, 吉興工程公司, 及“大潭發電廠501F 2號機FAT效率試驗見證報告”, 2010,10.
[17]CLAUS BORGNAKKE, RICHARD E. SONNTAG, FUNDAMENTALS OF THERMODYNAMICS, 林正仁等編譯, 7th, 熱力學, Appendix A.9、A.10., 全華圖書股份有限公司。
[18]網路資料:液化石油氣與液化天然氣之特性, 取自http://163.32.74.2/site/teh-car/teaching/LPG/06096-02.pdf.
[19]B. G. Kyle, Chemical and Process Thermodynamics (Englewood Cliffs, NJ: Prentice-Hall, 1984), Appendix 1,Table A-2.
[20]The Babcock & Wilcox Company, Steam/its generation and use. 41st edition,pp.34-1-34-2, John B. Kitto and Steven C. Stultz., The Babcock & Wilcox Company, Barberton, Ohio, U.S.A.2005.
[21]張君正,張木彬,「氮氧化物生成機制與控制技術之探討」,工業污染防治,第50期(4.1994),22頁。
[22] Francisc Popescu, Ioana Ionel, “Anthropogenic air pollution sources” University Politehnica from Timisoara Romania.
[23]網路資料:MIT Gas Turbine Laboratory, 取自http://web.mit.edu/aeroastro/labs/gtl/early_GT_history.html#1939
指導教授 傅尹坤 審核日期 2017-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明