摘要(英) |
The yield of EAF dust collected is around 180k to 220k tons annually in Taiwan, including 60k tons of stainless steel dusts. However, relevant research shows that the amounts of Pb, Cd, and Cr(VI) leached form the EAF dust have exceeded the limits. Taiwan EPA has characterized EAF dust as hazardous industrial waste. If the waste is not treated properly, it will bring harms to the environment, biological system, and human beings. To avoid those harms, the EAF dusts should be properly recycled and treated to reduce the adverse impact. At present, the EAF dust recycling is based on processing carbon steel dust and recycling zinc oxide is the main objective. For stainless steel dust which is rich in Fe, Cr, Ni, and other valuable metals, the majority solution is only burying the solid waste in specific landfill. It is not an effective process to reuse those elements but just temporally stabilizes the harmful dusts. This method is space-consuming since the landfill required large size of place, which is also not suitable for somewhere with limited land, such as Taiwan.
Electric Smelting Reduction Furnace (ESRF) is applied to treat the EAF dusts collected from three major domestic stainless steel plants. First, the content and composition of the stainless steel dust is identified and quantified. The results of analysis indicat that there are 21-35% of iron (Fe), 7.5-8.7% of chromium (Cd), and 0.8-2.3% of nickel (Ni) in the stainless steel dust. Total portion of reusable resources are 30-40% of all dust. Afterwards, the dusts are mixed uniformly and fed into the ESRF for granulation with 1550 ℃ of heat inside the reduction furnace, where the coke is used as a reducing agent to reduce the metallic oxides in the dust. Those metals with high boiling points like iron, chromium, and nickel, will be liquefied and dissolved into the stainless steel fluid and recycled. By controlling the basicity, the rate of chromium and nickel recovered can be optimized. The results of research show that better rate of recycle is achieved when the basicity is controlled between 1.05 -1.12. The recycle rate for chromium is 86-96% and above 90% for nickel. There are also 18.1% of chromium and 5.1% of nickel been recycled from the high temperature liquefied stainless steel by using ESRF. The recycled chromium and nickel can be reused as the material in the form of cast iron for steel mill after casting process. The secondary dust collected from the furnace gas contains 32% of zinc oxide, but the content is not high enough for zinc refining from smelter. It needs to be put back into the ESRF for refining and enrichment. The slag produced from ESRF has been tested and confirmed that the metals leached from the slag meet the TCLP standards. It can be used as building materials, roadbed material, and mixed in cement. This study shows the advantages of recovering chromium and nickel in stainless steel dust by electric smelting reduction process.
|
參考文獻 |
〔1〕 翁存義,「臺灣鋼鐵業大陸投資的關鍵成功因素」,國立中山大學,碩士論文,2006。
〔2〕 林偉凱,「我國特殊鋼主要產品需求預測」,金屬工業研究發展中心,ITIS計劃,2006年5月。
〔3〕 金琳,「世界不銹鋼市場分析」,冶金管理,第8期,冶金信息標準研究院, 2004。
〔4〕 翁嘉成,「電弧爐作業勞工之多環芳香烴碳氫化合物暴露危害評估」,國立成功大學,碩士論文,民國94年。
〔5〕 Kenneth, E.C., “A Review of New Furnace Technologies”, Iron and Steel Engineer, pp. 45-47, 1983.
〔6〕 Kishida, T., Yuasa, G., Shiina, K., “Energy Saving Technology of Electric Furnace Steelmaking in Japan”, SEAISI Quarterly, pp. 48-50, 1987.
〔7〕 陳玉麟,「台灣鋼鐵產業網絡-不銹鋼之生產與行銷策略」,國立中山大學,碩士論文,民國90年。
〔8〕 陳政澤、羅友志、曾迪華、張木彬、廖萬里,「電弧爐煉鋼業污染防治技術之現況與發展趨勢」,國立中央大學環境工程學刊,199-213頁,民國84年。
〔9〕 電弧爐煉鋼業環保工安整合性技術手冊,經濟部工業局,14-29頁,2000。
〔10〕 Guézennec, A.G., Huber, J.C., Patisson, F., Sessiecq, P., Birat, J.P., Ablitzer, D., “Dust Formation in Electric Arc Furnace: Birth of The Particles”, Powder Technology, Vol. 157, pp. 2−11, 2005.
〔11〕 Pickles, C. A., “Thermodynamic Analysis of the Separation of Zinc and Lead from Electric Arc Furnace Dust by Selective Reduction with Metallic Iron[J]”, Separation and Purification Technology, 2008.
〔12〕 楊金鐘,「固化及穩定化技術於廢棄物處理之應用」,化工技術,138-148頁,1995。
〔13〕 李偉立,「達成鋼鐵業事業廢棄物零廢棄願景-鋼鐵業集塵灰資源化研究」,屏東縣環境保護局,出國報告,民國95年。
〔14〕 宋海琛、彭兵,「不锈钢粉尘綜合利用現狀及研究進展」,礦產綜合利用,第3期,2004年6月。
〔15〕 吳文龍,「鋼鐵基本工業、鋁熔煉業集塵灰及事業污泥清理查核專案工作計畫」,行政院環境保護署計畫成果,中興工程顧問股份有限公司,民國103年。
〔16〕 許桂秋,「以序列萃取探討集塵灰之重金屬與戴奧辛溶出特性」,國立中央大學,碩士論文,民國97年。
〔17〕 胡金龍,「鋁熱反應回收有害集塵灰及污泥中有價金屬之研究」,國立雲林科技大學,碩士論文,2012。
〔18〕 Laforest G., Duchesne J., “Characterization and Leachability of Electric Arc Furnace Dust Made from Remelting of Stainless Steel”, Journal of Hazardous Materials, B, 135, pp. 156–164, 2006.
〔19〕 Tahir S., Alenka R.M., Štefica C.S., Vjera R.N., Monika J., “Characterization of Steel Mill Electric-arc Furnace Dust”, Journal Hazardous Materials, Vol. 109, No. 1-3, pp. 59-70. 2004.
〔20〕 蔡敏行,「煉鋼煙塵之現況與資源化技術」,環保月刊,98-113頁,2001。
〔21〕 Mikhail S.A., Turcotte A.M., Aota, J., “Thermoanalytical Study of EAF Dust and Its Vitrification Product”, Thermochimica Acta, Vol.287, Issue:1, pp. 71-79, 1996.
〔22〕 蔡柏棋、徐登科,「台灣常用爐石與工程應用實務」,技師報,第938期,2014年11月。
〔23〕 Zunkel, D., “What to Do with Your EAF Dust”, Steel Times International, pp. 46–56, 1996.
〔24〕 何春松、謝聖嫄,「高溫熔融還原法回收煉鋼集塵灰中之有價金屬」,區域與環境資源永續發展研討會,2011。
〔25〕 笹本博彥,「電気炉ダストの処理技術の研究」,日本東北大學,博士論文,2003。
〔26〕 李京社、朱经涛、杨宏博、杨树峰,「中国电炉炼钢粉尘处理现状」,河南治金,第19卷第4期,2011年8月。
〔27〕 Xia D. K., Pickles C.A., Minerals Engineering, 13 (Compendex), pp. 79, 2000.
〔28〕 Davis J.R. & Associates, Surface Engineering of Stainless Steel, ASM Handbooks, Surface Engineering, Vol.5, pp. 740, 1994.
〔29〕 吳銘誠,「不銹鋼電弧爐氧化渣之再利用研究」,高雄應用科技大學,碩士論文,民國92年。
〔30〕 沈永年、盧俊文,「含不銹鋼集塵灰瓷磚之工程性質研究」,臺灣鑛業,第 62 卷第 1 期,2010。
〔31〕 彭兵、彭及, 「不锈钢电弧炉粉尘的物理化学特性及形成机理探讨」 ,北方工业大学学报, 第15卷第1期,2003。
〔32〕 马国军、苏伟厚、薛正良、徐之浩,「不锈钢厂烟尘的微观结构及其中铬的赋存形式」,中国钢铁年会论文集,152−157頁,2009。
〔33〕 马国军、范巍、徐之浩等,「不锈钢厂烟尘中铬及其他元素的分布规律」,过程工程学报,第S1期,68−71頁,2010。
〔34〕 魏芬絨、張延玲、魏文洁、楊小剛,「不銹鋼粉塵化學組成及其Cr、Ni存在形態」,過程工程學報,第11卷第5期,2011。
〔35〕 BEFESA,中國不銹鋼協會年會簡報,北京,中國,2011。
〔36〕 劉瓊芳,「回收電爐集塵灰有價物質之技術介紹」,環安簡訊電子報,第57期,2005。
〔37〕 Lynn, J., “Process for Chemical Stabilisation of Heavy Metal Bearing Dust and Sludges, such as EAF Dust”, International Patent PCT/US 88/01879, Bethlehem Steel Corp, 1988.
〔38〕 Evans, L.G., Hogan, J.C., “Recycling of EAF Dust by Direct Injection”, Electric Furnace Conference Proceedings, vol. 44, pp. 367, 1987.
〔39〕 「鋼鐵業廢棄物資源化案例彙編」,經濟部工業局編,1996。
〔40〕 曹申,「提煉冶金技術與電爐集塵灰」,環安簡訊電子報,第57 期,1999。
〔41〕 李宗立,「電弧煉鋼煙塵之性質與資源化之研究」,成功大學礦冶及材料科學研究所,博士論文,1993。
〔42〕 鋼鐵基本工業、鋁熔煉業集塵灰及事業污泥清理查核專案工作計畫,2012。
〔43〕 楊錕池,「電弧爐碳鋼集塵灰資源化介紹」,台灣鋼聯,2005。
〔44〕 彭慶廣,「碳鋼煙塵脫氯及資源化製備奈米氧化鋅之研究」,國立臺北科技大學,碩士論文,2006。
〔45〕 嘉德技術開發股份有限公司工程技術中心,「電華新麗華不銹鋼廠電爐集塵灰熔融處理實驗計劃」,1999。
〔46〕 吳珮綺,「由集塵灰及粗氧化鋅以水熱法合成一維氧化鋅」,國立台北科技大學,碩士論文,2006。
〔47〕 马国军、翁继亮、薛正良、高建明、苏伟厚,「不锈钢电炉烟尘的环境浸出行为研究」,过程工程学报,第9卷增刊1,2009年6月。
〔48〕 許明宏,「ESRF熔融爐操作實務」,嘉德創資源股份有限公司訓練教材,2012。
〔49〕 林於隆,「爐渣(Slag) 」嘉德創資源股份有限公司技術會議,2012。
〔50〕 林志杰,「應用電弧爐氧化碴於高性能低強度材料之研究」,私立淡江大學,碩士論文,2004。
〔51〕 村上忠弘,石田貴榮,“水道污泥灰分の熔融特性に關する考察” ,下水道協會誌,第26卷第296期,1989。
〔52〕 倪文、李建平、方興、陳德平、陳那那,礦物材料學導論, 科學出版社, 33-34頁,1998。
〔53〕 廖錦聰、張蕙蘭、徐文慶、黃契儒,「垃圾焚化底灰之資源化利用」,一般廢棄物焚化灰渣資源化技術與實務研討會,第131-146頁,台北,1996。
〔54〕 段建平、张永亮、李宏、王建昌,「电炉直接利用Cr-Ni不锈钢除尘灰的试验分析」,钢铁,第44卷第5期,2009年5月。
|