博碩士論文 102356009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:54.91.71.108
姓名 張任鋒(Chang Jen Feng)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 利用化學還原法與芬頓氧化程序處理螯合性含鎳廢液之研究
(Combined Chemical Reduction with Fenton Oxidation for the Treatment of Nickel-Containing Solution)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 工業製程中常使用化學鍍鎳來進行電子元件的表面處理加工,由於所產生的廢液中有相當高濃度的鎳金屬離子、次磷酸鹽類與檸檬酸等有機螯合劑,導致這些螯合性的含鎳廢液具有高濃度的COD (40,000 ~ 70,000 mg/L),使得生物難分解。一般處理含鎳廢液的方法為化學混凝沉澱法,由於此法會產生大量的重金屬污泥,造成後續處理負擔,且其中含有重金屬鎳離子,而鎳為有價金屬及鋼鐵工業不可或缺原料來源,若能有效處理,極富經濟效益。因此本研究針對實廠螯合性含鎳廢液進行相關處理探討,利用化學還原法進行鎳離子去除並製備成鎳金屬回收,研究過程中,進行不同反應單體與各項操作變因對其去除率及回收效率之探討,另針對高濃度COD部分,同時利用芬頓氧化程序進行研究,探討各項操作變因對COD降解效率之影響,最後增加超音波芬頓氧化程序進行比較。本研究結果顯示,利用化學還原法可去除廢液中78%的鎳離子並製備成鎳金屬回收,其中顯著影響因子為反應單體、pH、[NaH2PO2]劑量等,最佳操作條件為使用polyimide作為反應單體,將含鎳廢液系統pH控制於6,添加10 g/L的[NaH2PO2]以增加Ni2+還原效率,且輔以觸媒0.3 g/L [PdSO4]投加於廢液中,可降低活化能,增加反應速率,而得最大鎳金屬回收效率。於芬頓系統中,各項操作變因,所產生之氫氧自由基(OH.),在初始反應的30分鐘內即快速生成(除連續式加藥外),廢液COD降解效率可達40%。但[Fe2+]加藥量不可大於[H2O2],如此才能有效催化H2O2,產生適量之氫氧自由基(OH.)以氧化分解有機物,否則會產生大量Fe(OH)3污泥沉澱,最佳加藥量操作條件為[Fe2+]/[H2O2]=30/1800 mM,可得最大COD降解效率> 45%,即[Fe2+]/[H2O2]比例為1:60。在[Fe2+]/[H2O2] = 30/1200 mM相同加藥量條件下,以超音波芬頓系統優於傳統芬頓,但須提供更多[H2O2]加藥量,才能生成更多氫氧自由基(OH.),提升COD降解效率。
摘要(英) The electroless nickel plating is widely used for the metal finish process of electronic component in various industries. In the waste nickel-containing solution produced from the process, high-concentration of nickel metal ions, hypophosphite and citrate acid organic compounds may result in high COD (40,000 ~ 70,000 mg/L), and cause difficulty for its biodegradation. Chemical precipitation is the most commonly used method for the treatment of waste nickel-containing solution, but it produces precipitation sludge which may lead to heavy loading of the secondary treatment process. However, waste nickel-containing solution, consists of high-concentration nickel metal ions which are indispensable raw material for the steel industry, and so it will bring about economic value if the nickel metal ions can be treated and recovered properly. Therefore, this study aims to develop an effective method for treating waste nickel-containing solution. The chemical reduction method was employed to remove the nickel ions and reclaim the nickel metal. And the effects of the operational conditions on Ni2+ removal rate and nickel metal recovery efficiency are investigated, as well as the efficiency of COD degradation by using Fenton oxidation procedure. Finally, the ultrasonic Fenton method is applied for comparison. The results of the study showed that with the chemical reduction method, the highest removal efficiency of the Ni2+ from the waste nickel-containing solution was 78%. And the most influential factors are the reaction monomer, pH value and [NaH2PO2]. The optimum operating condition was to use the polyimide as the reaction monomer, and to control the pH = 6 of the waste nickel-containing solution. The dosage was as [NaH2PO2] = 10 g/L and the [PdSO4] = 0.3 g/L. Under the optimum operating conditions, the highest nickel metal recovery efficiency could be realized. In the Fenton system, the reactive hydroxyl radicals (OH.) were generated in the initial 30 minutes reaction time, and the maximum COD degradation efficiency was up to 40%. The dosage of [Fe2+] should be precisely controlled to be lower than [H2O2], and H2O2 could be effectively catalyzed to generate hydroxyl radicals (OH.). Otherwise, a large amount of sludge containing Fe(OH)3 would be produced. The optimum operating condition was [Fe2+]/[H2O2] = 30/1800 mM, and it resulted in the maximum COD degradation efficiency up to 45%, which meant the dosing ratio of [Fe2+] and [H2O2] was 1:60. Under the same operation condition of [Fe2+]/[H2O2]=30/1200 mM, the performance of ultrasonic Fenton method was better than traditional Fenton method. Providing higher [H2O2] dosage would generate more hydroxyl radicals (OH.), resulting in higher COD degradation efficiency.
關鍵字(中) ★ 螯合性含鎳廢液
★ 化學還原法
★ Polyimide
★ 芬頓氧化程序
★ 超音波芬頓法
關鍵字(英) ★ Waste Nickel-containing Solution
★ Chemical Reduction
★ Polyimide
★ Fenton
★ ultrasonic Fenton
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 螯合性含鎳廢液之特性 4
2.2 螯合性含鎳廢液處理技術 7
2.2.1 化學處理程序 8
2.2.2 物理處理程序 14
2.3 化學還原法 15
2.3.1 化學反應機制 17
2.3.2 反應系統影響因子 18
2.3.3 聚醯亞胺(Polyimide) 20
2.4 Fenton/US-Fenton氧化程序 23
2.4.1 化學反應機制 23
2.4.2 反應系統影響因子 24
2.4.3 超音波類芬頓法(US-Fenton) 27
第三章 研究方法與實驗設備 29
3.1 實驗架構 29
3.2 實驗材料 31
3.2.1 實驗藥品 31
3.2.2 實驗設備 31
3.3 實驗方法與步驟 33
3.3.1 化學還原法回收製備鎳金屬方法 33
3.3.2 Fenton/US-Fenton法降解含鎳廢液COD方法 35
3.4 含鎳廢液分析方法 36
3.5 實驗結果分析方法 37
第四章 結果與討論 40
4.1 螯合性含鎳廢液分析結果 40
4.1.1 螯合性含鎳廢液分析 40
4.1.2 含鎳廢液中其它物質 43
4.2 化學還原法回收鎳金屬結果 44
4.2.1 反應單體(陰極材料)與反應時間 45
4.2.2 反應單體(PI)表面積與反應時間 48
4.2.3 不同pH與反應時間 50
4.2.4 還原劑(NaH2PO2)劑量與反應時間 54
4.2.5 催化劑(PdSO4)劑量與反應時間 56
4.3 Fenton/US-Fenton法降解COD結果 58
4.3.1 [Fe2+]加藥量與反應時間 58
4.3.2 [H2O2]加藥量搭配低劑量[Fe2+]與反應時間 59
4.3.3 [H2O2]加藥量搭配高劑量[Fe2+]與反應時間 61
4.3.4 [Fe2+]/[H2O2]加藥比例與反應時間 62
4.3.5 [Fe2+]/[H2O2]加藥方式與反應時間 63
4.3.6 Fenton/US-Fenton與反應時間 64
第五章 結論與建議 66
5.1 結論 66
5.2 建議 66
參考文獻 67
參考文獻
Abrantes, L. M., and Correia, J. P., ”On the mechanism of electroless Ni-P
plating”, Journal of the Electrochemical Society, Vol 141(9), pp. 2356-2360,
(1994)

Barakat, M. A., ”New trends in removing heavy metals from industrial
wastewater”, Arabian Journal of Chemistry, Vol 4(4), pp. 361-377, (2011).

Barbusinski, K., ”Fenton reaction - controversy concerning the chemistry”,
Ecological Chemistry and Engineering S, Vol 16(3), pp. 347-358, (2009).

Brenner, A., Riddell, G. E., ”Nickel plating on steel by chemical reduction”,
Part of Journal of Research of the National Bureau of Standards, Vol 37, pp. 31-
34, (1946).

Bulasara, V. K., Thakuria, H., Uppaluri, R., and Purkait, M. K., ”Combinatorial
performance characteristics of agitated nickel hypophosphite electroless plating
baths”, Journal of Materials Processing Technology, Vol 211(9), pp. 1488-1499,
(2011).

Campos, N., Perez-Mas, A. M., Alvarez, P., Menéndez, R., and Gómez, D.,
”Surface treatment of polyimide substrates for the transfer and multitransfer of
graphene films”, Applied Surface Science, Vol 349, pp. 101-107, (2015).

Chen, X., Huang, G., and Wang, J., ”Electrochemical reduction/oxidation in the
treatment of heavy metal wastewater”, Journal of Metallurgical Engineering
(ME), Vol 2(4), pp. 161-164, (2013).

Coman, V., Robotin, B., and Ilea, P., ”Nickel recovery/removal from industrial
wastes : A review”, Resources, Conservation and Recycling, Vol 73, pp. 229-238,
(2013).

Covinich, L. G., Bengoechea, D. I., Area, M. C., and Fenoglio, R. J., ”Advanced
oxidation processes for wastewater treatment in the pulp and paper industry :
A review”, American Journal of Environmental Engineering, Vol 4(3), pp. 56-
70, (2014).

Evans, W. T., and Schlesinger, M., ”The effect of solution pH and heat-
treatment on the properties of electroless nickel boron films”, Journal of the
Electrochemical Society, Vol 141(1), pp. 78-82, (1994).

Firdianto, A., ”Ultrasonic treatment with nickel electroplating combined with
oxidation for developing γ-Al2O3 washcoat on Fe-Cr-Al substrate”, A thesis of
the Degree of Master of Mechanical and Manufacturing Engineering of
Universiti Tun Hussein Onn Malaysia, (2012).

Flis, J., and Duquette, D. J., ”Catalytic activity of iron, nickel, and nickel-
phosphorus in electroless nickel plating”, Journal of the Electrochemical
Society, Vol 131(1), pp. 34-39, (1984a).

Flis, J., and Duquette, D. J., ”Initiation of electroless nickel plating on copper,
palladium-activated copper, gold, and platinum”, Journal of the
Electrochemical Society, Vol 131(2), pp. 254-260, (1984b).

Flis, J., and Duquette, D. J., ”Nucleation and growth of electroless nickel
deposits on molybdenum activated with palladium”, Journal of the
Electrochemical Society, Vol 131(1), pp. 51-57, (1984c).

Fu, F., and Wang, Q., ”Removal of heavy metal ions from wastewaters : A review”,
Journal of Environmental Management, Vol 92(3), pp. 407-418, (2011).

Gafin, A. H., and Orchard, S. W., ”Catalytic effects in the initiation of
autocatalytic nickel deposition on nickel containing substrates”, Journal of
the Electrochemical Society, Vol 140(12), pp. 3458-3462, (1993).

Horikawa, K., and Hirasawa, I., ”Removal and recovery of nickel ion from
wastewater of electroless plating by reduction crystallization”, Korean Journal
of Chemical Engineering, Vol 17(6), pp. 629-632, (2000).

Hsiao, Y. S., Whang, W. T., Wu, S. C., and Chuang, K. R., ”Chemical formation
of palladium-free surface-nickelized polyimide film for flexible electronics”,
Thin Solid Films, Vol 516(12), pp. 4258-4266, (2008).

Huang, Y. H., Su, H. T., and Lin, L. W., ”Removal of citrate and hypophosphite
binary components using Fenton, photo-Fenton and electro-Fenton processes”,
Journal of Environmental Sciences, Vol 21, pp. 35-40, (2009).

Kunces, D. J., and Toller, W. H., ”Waste treatment of electroless nickel to
remove heavy metal, phosphites and chelators”, pp. 1-7, (1985).

Lee, C. L., Huang, Y. C., Wan, C. C., Wang, Y. Y., Ju, Y. J., Kuo, L. C., and
Oung, J. C., ”Synthesis of hydrophilic and hydrophobic Pd nanoparticles with
in situ generated reducing agent and their application as activator for
electroless copper and nickel depositions”, Journal of the Electrochemical
Society, Vol 152(8), pp. C520-C524, (2005).

Lelental, M., ”Catalysis in nickel electroless plating”, Journal of the
Electrochemical Society, Vol 122(4), pp. 486-490, (1975).
Li, B., Li, N., Li, D., and Wang, Y., ”Communication—Reaction processes in
electroless Pd deposition on Ni-P surfaces utilizing formic acid as reducing
agent”, Journal of the Electrochemical Society, Vol 163(6), pp. D256-D258.
(2016).

Li, L., Ma, Y., Gao, G., Wang, H., Yang, X., Xie, J., and Wang, W., ”Pretreatment
and deposition process of electroless Ni plating on polyimide film for electronic
field applications”, Colloids and Surfaces A: Physicochemical and Engineering
Aspects, Vol 477, pp. 42-48, (2015).

Liu, P., Li, C., Liang, X., Lu, G., Xu, J., Dong, X., Zhang, W., and Ji, F.,
”Recovery of high purity ferric phosphate from a spent electroless nickel plating
bath”, Journal of the Green Chemistry, Vol 16(3), pp. 1217-1224, (2014).

Mat, H., Yuliusman, Y., and Othman, N., ”Selective nickel recovery from spent catalyst”,
World Engineering Congress and Exhibition 1999 (WEC′99), pp. 19-22, Kuala
Lumpur, July (1999).

Mallory, G. O., ”Chapter 1 - The fundamental aspects of electroless nickel plating”, Electroless Plating, William Andrew Publishing, pp. 1-56, (1990).

Mallory, G. O., ”Chapter 2 - The electroless nickel plating bath : effect of
variables on the process”, Electroless Plating, William Andrew Publishing, pp.
57-99, (1990).

Mohamma, A. W., Othaman, R., and Hilal, N., ”Potential use of nanofiltration
membranes in treatment of industrial wastewater from Ni-P electroless plating”,
Desalination, Vol 168, pp. 241-252, (2004).

Muraliraja, R., Elansezhian, R., and Patterson, K., ”Optimization of reducing
agent and key parameters effect on the efficiency of electroless Ni-P plating
by taguchi method”, Procedia Materials Science, Vol 5, pp. 2478-2486, (2014).

Peng, C., Jin, R., Li, G., Li, F., and Gu, Q., ”Recovery of nickel and water from
wastewater with electrochemical combination process”, Separation and
Purification Technology, Vol 136, pp. 42-49, (2014).

Ruiz, C. S., ” Feton reactions (FS-TER-003)”, Water and Environmental Engineering
Group of Universidade da Coruña, pp. 1-30, (2015).

Schlesinger, M., ”Electroless deposition of nickel”, Modern Electroplating,
John Wiley and Sons, Inc., Vol 5, pp. 447-458, (2010).

Segneanu, A. E., Orbeci, C., Lazau, C., Sfirloaga, P., Vlazan, P., Bandas, C., and
Grozescu, I., ”Chapter 4 - wastewater treatment methods”, Intech Open
Science, Vol 3, pp. 53-80, (2013).

Seo, M., Cho, S., Lee, S., and Uhm, S. ”Feasibility study of UV-Fenton and
chemical precipitation process for the recycling of spent electroless nickel
plating baths”, The 2014 World Congress on Advances in Civil, Environmental
and Materials Research (ACEM14), August (2014).

Shih, Y. J., Lin, C. P., and Huang, Y. H., ”Application of Fered-Fenton and
chemical precipitation process for the treatment of electroless nickel plating
wastewater”, Separation and Purification Technology, Vol 104, pp. 100-105,
(2013).

Stoppa, G., ”Chapter 10 - Ultrasound in electrochemical degradation of
pollutants”, Intech Open Science, Vol 3, pp. 205-226, (2012).

Sun, R., Yu, G., Xie, Z., Hu, B., Zhang, J., He, X., and Zhang, X., ”Influence of
hypophosphite on efficiency and coating qualities of electroless Ni-P deposits
on magnesium alloy AZ91D”, International Journal of Electrochemical Science,
Vol 10, pp. 7893-7904, (2015).

Upadhyay, K., and Khandate, G., ”Ultrasound assisted oxidation process for the
removal of aromatic contamination from effluents : A review”, Universal
Journal of Environmental Research and Technology, Vol 2(6), pp. 458-464,
(2012).

Varma, S., Sarode, D., Wakale, S., Bhanvase, B. A., and Deosarkar M. P.,
”Removal of nickel from waste water using graphene nanocomposite”,
International Journal of Chemical and Physical Sciences, Vol 2, pp. 132-139,
(2013).

Wang, H., Li, Q., and Gao, C., ”Preparation of nanometer nickel powder from
spent electroless nickel plating baths by using thiourea dioxide as a green
reductant”, Journal of Cleaner Production, Vol 84, pp. 701-706, (2014).

Weng, C. H., Lin, Y. T., Chang, C. K., and Liu, N., ”Decolourization of direct
blue 15 by Fenton/ultrasonic process using a zero-valent iron aggregate catalyst”,
Ultrason Sonochem, Vol 20(3), pp. 970-977, (2013).

Yamamoto, D., Munakata, H., and Kanamura, K., ”Synthesis and
characterization of composite membrane with three-dimensionally ordered
macroporous polyimide matrix for DMFC”, Journal of the Electrochemical
Society, Vol 155(3), pp. B303-B308, (2008).

Zhang, Y., Tan, K. L., Yang, G. H., Kang, E. T., and Neoh, K. G., ”Electroless
plating of copper and nickel via a sn-free process on polyimide films
modified by surface graft copolymerization with 1-Vinylimidazole”, Journal
of the Electrochemical Society, Vol 148(9), pp. C574-C582, (2001).

司洪濤、呂冠霖、黃香玫,「氧化技術在高濃度COD廢水處理之應用」,經濟部
工業局,產業綠色輔導與推廣計畫,(2008)。

吳采芳,「超音波結合芬頓程序處理廢水中難分解有機物:以化工廠廢水為例」
,國立交通大學環境工程研究所,碩士論文,(2012)。

吳嘉偉,「結合化學置換法及Fenton-like程序處理含重金屬及有機物混合溶液之
反應行為研究」,大葉大學工業工程與管理學研究所,碩士論文,(2003)。

李九龍、曾國輝、呂承恩,「鎳廢液處理與回收之研究」,龍華科技大學學報,
第二十五期,(2008)。

李中光、劉新校、侯佳蕙,「淺談電鍍廢水處理」,桃園市大學校院產業環保技
術服務團環保簡訊,第20期,(2013)。

李中光、劉新校、邱惠敏,「重金屬廢水處理技術之進展」,桃園市大學校院產
業環保技術服務團環保簡訊,第23期,(2014)。

李中光、邱惠敏、李念庭,「螯合重金屬廢水之處理:(一) 硫化物沉澱法」,桃
園市大學校院產業環保技術服務團環保簡訊,第34期,(2017)。

李中光、邱惠敏、李念庭,「螯合重金屬廢水之處理:(二) 螯合沉澱法及氧化
法」,桃園市大學校院產業環保技術服務團環保簡訊,第34期,(2017)。

李中光、邱惠敏、李念庭,「螯合重金屬廢水之處理:(三) 還原法及電化學法」
,桃園市大學校院產業環保技術服務團環保簡訊,第34期,(2017)。

李中光、劉新校、陳昱峰、吳孟昌、劉佳雯,「Fenton氧化法在處理生物難降解
有機廢水上之應用」,桃園市大學校院產業環保技術服務團環保簡訊,第12期
,(2011)。

林志平,「電芬頓法處理無電鍍鎳廢液之研究」,國立成功大學化學工程研究所
,碩士論文,(2007)。

林海波、伍振毅、黄卫民、徐红、张雪娜,「工业废水电化学处理技术的进展及
其发展方向」,化工进展,27(2),(2008)。

侯萬善,「廢水金屬處理回收技術簡介」,中技社通訊,(2003)。

翁誌煌、張正綸,「Fenton法結合超音波技術降解直接性偶氮染料(Direct Blue
15)之研究」,區域與環境資源永續發展研討會,(2011)。

張芳淑、高思懷、吳嘉麗,「pH值在Fenton系統中所扮演的角色探討」,廢水處
理技術研討會論文集,第二十屆,(1985)。

陳見財、張勝雄、林華宇,「化學鎳廢液自體催化技術介紹」,永續產業發展期
刊,永續水資源管理專輯,62~71頁,(2008)。

陳信文、周更生、竇維平、林慶炫、陳志銘,「綠色軟板之開發與應用」,行政
院國家科學委員會補助專題研究計畫期中進度報告,計畫編號: NSC 96-2218-E-
007-012,(2008)。

曾丹林、刘胜兰、张崎、胡江生、赵磊、龚晚君、王光辉,「Fenton及其联合法
处理有机废水的研究进展」,工业水处理,35(4),(2015)。

黃耀輝、黃毅峰,「化學鎳廢液處理方法之研究(1/3)」,行政院國家科學委員會
專題研究計畫期中進度報告,計畫編號: NSC 94-2211-E-006-032,(2006)。

黃耀輝、黃毅峰、洪啟昌、林立,「化學鎳廢液處理方法之研究(2/3)」,行政院
國家科學委員會專題研究計畫期中進度報告,計畫編號: NSC 94-2211-E-006-
032,(2007)。

黃耀輝、林志平,「化學鎳廢液處理方法之研究(3/3)」,行政院國家科學委員會
專題研究計畫研究成果報告(完整版),計畫編號: NSC 96-2221-E-006-022,
(2008)。

楊睿瑜,「鎳鈷磷合金無電鍍製程及性質研究」,國立台北科技大學材料科學與
工程研究所,碩士論文,(2011)。

闫雷、于秀娟、李淑芹,「电解法处理化学镀镍废液」,沈阳建筑大学学报,自
然科学版,25(4),(2009)。

蕭育生,「化學方法製備鎳奈米顆粒及鎳薄膜於軟性聚亞醯胺基板上與特性研
究」,國立交通大學材料科學與工程學研究所,碩士論文,(2005)。

謝子陽、劉玉玲、王大銘、謝學真、黃靖軒、陳昱瑋,「結合支撐式液膜及離子
交換樹脂於多成分金屬離子廢液處理技術開發」,行政院環境保護署,101年環
境科技論壇,(2012)。



周键、王三反、张学敏离子交换膜电解回收含镍废水中镍的研究」,工业水处
理,35(1),(2015)。

李建三,「低温化学镀镍液中次磷酸钠还原效率的研究」,电镀与环保,22(5),
(2002)。

陈月华、刘永永、江德凤、袁礼华,「化学镀镍施镀过程稳定性分析」,表面技
術,42(2),(2013)。

陈健荣、崔国峰,「化学镀镍废液处理的现状及展望」,电镀与环保,27(4),
(2007)。
指導教授 張木彬(Chang Moo Been) 審核日期 2017-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明