參考文獻 |
[1] S.C. Bergsma, M.E. Kassner, X. Li, Delos-Reyes MA, Hayes TA, The Optimized Mechanical Properties of the New Aluminum Alloy AA 6069. J. Mater. Eng. Perform., 5, 1996, p.111–116.
[2] S.C. Bergsma, M.E. Kassner, X. Li, M.A. Wall, Strengthening in the new aluminum alloy AA 6069. Mater Sci. Eng. A, 254, 1998, p.112–118.
[3] F.J. MacMaster, K.S. Chan, S.C. Bergsma, M.E. Kassner, Aluminum alloy 6069 part II: fracture toughness of 6061-T6 and 6069-T6. Mater. Sci. Eng. A, 289, 2000, p.54–59.
[4] M. Cai, D.P. Field, G.W. Lorimer, A systematic comparison of static and dynamic ageing of two Al–Mg–Si alloys. Mater. Sci. Eng. A, 373, 2004, p.65–71.
[5] X. Li, M.E. Kassner, S.C. Bergsma, Recrystallization Behavior of Rolled Ingots of 6061 and 6069 Aluminum Alloys. J. Mater. Eng. Perform., 9, 2000, p.416–423.
[6] H.Z. Li, J. Jiang, M. Deng, X.P. Liang, Hot deformation behavior and microstructure of 6069 aluminm alloy. Mater. Sci. Forum, 788, 2014, p.201–207.
[7] M.E. Kassner, P. Geantil, X. Li, A Study of the Quench Sensitivity of 6061-T6 and 6069-T6 Aluminum Alloys. J. Metall., 2011, 5 pages.
[8] B. Li, Q.L. Pan, Z.Y. Zhang, C. Li, Characterization of flow behavior and microstructural evolution of Al–Zn–Mg–Sc–Zr alloy using processing maps. Mater. Sci. Eng. A, 556, 2012, p.844–848.
[9] A. Jenab, A. Karimi Taheri, Experimental investigation of the hot deformation behavior of AA7075: Development and comparison of flow localization parameter and dynamic material model processing maps. Int. J. Mech. Sci., 78, 2014, p.97–105.
[10] H.Z. Li, H.J. Wang, X.P. Liang, H.T. Liu, Y. Liu, Zhang XM, Hot deformation and processing map of 2519A aluminum alloy. Mater. Sci. Eng. A, 528, 2011, p.1548–1552.
[11] Y.C. Lin, L.T. Li, Y.C. Xia, Y.Q. Jiang, Hot deformation and processing map of a typical Al–Zn–Mg–Cu alloy. J. Alloy Compd., 550, 2013, p.438–445.
[12] G. Meng, B.L. Li, H.M. Li, H. Huang, Z.R. Nie, Hot deformation and processing maps of an Al–5.7 wt.%Mg alloy with erbium., Mater. Sci. Eng. A, 517, 2009, p.132–137.
[13] B. Chen, X.L. Tian, X.L. Li, C. Lu, Hot Deformation Behavior and Processing Maps of 2099 Al-Li Alloy. J. Mater. Eng. Perform., 23,2014, p.1929–1935.
[14] M. Rajamuthamilselvan, S. Ramanathan, Hot deformation behaviour of 7075 alloy. J Alloy Compd., 509, 2011, p.948-952.
[15] C.M. Cepeda-Jiménez, O.A. Ruano, M. Carsí, F. Carreño, Study of hot deformation of an Al–Cu–Mg alloy using processing maps and microstructural characterization. Mater. Sci. Eng. A, 552, 2012, p.530-539
[16] J. Luo, M.Q. Li, D.W. Ma, The deformation behavior and processing maps in the isothermal compression of 7A09 aluminum alloy. Mater. Sci. Eng. A, 532, 2012, p.548-557.
[17] H.J. McQueen, W. Blum, Dynamic recovery: sufficient mechanism in the hot deformation of Al (<99.99), Mater. Sci. Eng. A, 290, 2000, p.95-107.
[18] H.J. McQueen, H. Mecking, Creep and Fracture of Engineering Materials and Structure, Pineridge Press, Swansea, UK, 1984, pp. 169.
[19] H.J. McQueen, Initiating nucleation of dynamic recrystallization, primarily in polycrystals, Mat. Sci. Eng. A, 101, 1987, p.149-160.
[20] A. Najafizadeh, S. Yue, J.J. Jonas, Influence of Hot Strip Rolling Parameters on Austenite Recrystallization in Interstitial Free Steels, ISIJ Int., 32, 1992, p.213-221.
[21] H.J. McQueen. N.D Ryan, Constitutive analysis in hot working, Mater. Sci. Eng. A, 322, 2002, p.43-63.
[22] M. Ueki, S. Horie, T. Nakamura, Factors affecting dynamic recrystallization of metals and alloys, Mater. Sci. Technol., 3, 1987, p.329-337.
[23] T. Mohri, M. Mabuchi, N. Nakmura, T. Asahina, H. Iwasaki, T. Aizawa, K. Higashi, Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn, Mater. Sci. Eng. A, 290, 2000, p.139-144.
[24] H.J. McQueen, D.L. Bourell, Hot workability of metals and alloys, JOM, 39, 1987, p.28-35.
[25] R.D. Doherty, D.A Hughes, F.J. Humphreys, J.J. Jonas, D. Juul-Jensen, M.E.Kassner, W.E. King. T.E. McNelley, H.J. McQueen, A.D Rollett, Current issues in recrystallization: a review, Mater. Sci. Eng. A, 238, 1998 p.219-274.
[26] T. Sakai, J.J. Jonas., Dynamic recrystallization: Mechanical and microstructural considerations, Acta Metall., 32, 1984, p.189-209.
[27] C.M. Sellars, Recrystallization of metals during hot deformation, Philos. Trans. R. Soc. London, Ser. A, 288, 1978, p.147-158.
[28] S. Guo, D. Li, H. Pen, Q. Guo, J. Hu, Hot deformation and processing maps of Inconel 690 superalloy, J. Nucl. Mater., 410, 2011, p.52-58.
[29] U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci., 48 ,2003, p.171-273.
[30] J. F. Humphreys, Recrystallization and Recovery, in Materials Science and Technology, ed. By R. W. Cahn, P. Haasen and E. J. Kramer, VCH, Weinheim , 15, 1991, p.371-428.
[31] G. Rai. and N. J. Grant, Observations of Grain Boundary Sliding during Superplasticity Deformation, Metall. Trans. A, 14, 1983, p.1451-1458.
[32] T.G. Langdon, An Evaluation of the Strain Contributed by Grain Boundary Sliding in Superplasticity, Mater. Sci. Eng. A, 174, 1994, p.225-230.
[33] Van Vlack, Lawrence H., Elements of Material Science and Engineering 1989, p.221.
[34] Y.V.R.K. Prasad and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, ASM International, Materials Park, 1997.
[35] H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, London, 1982.
[36] C.H. Liao, H.Y. Wu, S. Lee, F.J. Zhu, H.C. Liu, and C.T. Wu, Strain-dependent constitutive analysis of extruded az61 mg alloy under hot compression, Mater. Sci. Eng. A, 2013, 565, p.1–8.
[37] H.Y. Wu, J.C. Yang, F.J. Zhu, and C.T. Wu, Hot Compressive Flow Stress Modeling of Homogenized AZ61 Mg Alloy Using Strain-Dependent Constitutive Equations, Mater. Sci. Eng. A, 574, 2013, p.17–24.
[38] H. Mirzadeh and A. Najafizadeh, Prediction of the Critical Conditionsfor Initiation of Dynamic Recrystallization, Mater. Des., 31, 2010, p.1174–1179.
[39] L.E. Murr and E.V. Esquivel, Observations of Common Microstructural Issues Associated with Dynamic Deformation Phenomena: Twins, Microbands, Grain Size Effects, Shear Bands, and Dynamic Recrystallization, J. Mater. Sci., 39, 2004, p.1153–1168.
[40] G.A. Li, L. Zhen, C. Lin, R.S. Gao, X. Tan, and C.Y. Xu, Deformation Localization and Recrystallization in TC4 Alloy Under Impact Condition, Mater. Sci. Eng. A, 395, 2005, p.98–101.
[41] Y.B. Xu, Y.L. Bai, and M.A. Meyers, Deformation, Phase Transformation and Recrystallization in the Shear Bands Induced by High-Strain Rate Loading in Titanium and Its Alloys, J. Mater. Sci. Technol., 2, 2006, p. 737–744.
[42] Y.B. Xu, W.L. Zhong, Y.J. Chen, L.T. Shen, Q. Liu, Y.L. Bai, and M.A. Meyers, Shear Localization and Recrystallization in Dynamic Deformation of 8090 Al–Li Alloy, Mater. Sci. Eng. A, 299, 2001, p.287-295.
[43] S.E. Hsu, G.R. Edwards, and O.D. Sherby, Influence of Texture on Dislocation Creep and Grain Boundary Sliding in Fine-Grained Cadmium, Acta Metall., 31, 1983, p.763–772.
[44] H.J. McQueen and J.E. Hockett, Microstructures of Aluminum Compressed at Various Rates and Temperatures, Met. Trans., 1, 1970, p.2997–3004.
[45] Y.C. Lin, L.T. Li, Y.C. Xia, Y.Q. Jiang, Hot deformation and processing map of a typical Al–Zn–Mg–Cu alloy, J. Alloy. Compd., 550, 2013, p. 438–445.
[46] C.M. Cepeda-Jiménez, O.A. Ruano, M. Carsí, F. Carreño, Study of hot deformation of an Al–Cu–Mg alloy using processing maps and microstructural characterization, Mater. Sci. Eng. A, 552, 2012, p.530–539.
[47] X.H. Fan, M. Li, D.Y. Li, Y.C. Shao, S.R. Zhang, Y.H. Peng, Dynamic recrystallisation and dynamic precipitation in AA6061 aluminium alloy during hot deformation, Mater. Sci. Technol., 30, 2014, p.1263–1272.
[48] Y.B. Yang, Z.P. Xie, Z.M. Zhang, X.B. Li, Q. Wang, Y.H. Zhang, Processing maps for hot deformation of the extruded 7075 aluminum alloy bar: Anisotropy of hot workability, Mater. Sci. Eng. A, 615, 2014, p.183–190.
[49] Z.C. Sun, L.S. Zheng, H. Yang, Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation, Mater. Charact., 90, 2014 p.71–80.
[50] H.J. McQueen, E. Fry, J. Belling, Comparative constitutive constants for hot working of Al-4.4Mg-0.7Mn (AA5083), J. Mater. Eng. Perform., 10, 2001, p.164–172.
[51] X.D. Huang, H. Zhang, Y. Han, W.X. Wu, J.H. Chen, Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature, Mater. Sci. Eng. A, 527, 2010, p.485–490.
[52] M.R. Rokni, A. Zarei-Hanzaki, H.R. Abedi, Microstructure evolution and mechanical properties of back extruded 7075 aluminum alloy at elevated temperatures, Mater. Sci. Eng. A, 532, 2012, p.593–600.
[53] M.R. Rokni, A. Zarei-Hanzaki, A. Ali Roostaei, H.R. Abedi, Mater. Des.,32 ,2011, p.2339–2344.
[54] H.J. McQueen, W. Blum, Dynamic recovery: sufficient mechanism in the hot deformation of Al (<99.99), Mater Sci. Eng. A, 290, 2000, p.95–107.
[55] H.J. McQueen, Development of dynamic recrystallization theory, Mater Sci. Eng. A, 387–389, 2004, p.203–208.
[56] M.E. Kassner, S.R. Barrabes, New developments in geometric dynamic recrystallization, Mater. Sci. Eng. A, 410–411, 2005, p.152–155.
[57] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 60, 2014, p.130–207.
[58] U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci., 48, 2003, p.171–273.
[59] W. Pantleon, Stage IV work-hardening related to disorientations in dislocation structures, Mater. Sci. Eng. A, 387–389, 2004, p.257–261.
[60] L. Lecarme, C. Tekoğlu, T. Pardoen, Void growth and coalescence in ductile solids with stage III and stage IV strain hardening, Int. J. Plast., 27, 2011, p.1203–1223.
[61] O. Nijs, B. Holmedal, J. Friis, E. Nes, Sub-structure strengthening and work hardening of an ultra-fine grained aluminium–magnesium alloy, Mater. Sci. Eng. A, 483–484, 2008, p.51–53.
[62] C.H. Caceres, A.H. Blake, On the strain hardening behaviour of magnesium at room temperature, Mater. Sci. Eng. A, 462, 2007, p.193–196.
[63] P. Lukáč, J. Balík, Kinetics of Plastic Deformation, Key Eng. Mater., 97–98, 1994, p.307–322.
[64] H. Mecking, U.F. Kocks, Kinetics of flow and strain-hardening, Acta Metall., 29, 1981, p.1865–1875.
[65] H.J. McQueen, E. Evangelista, Mechanisms in creep and hot working to high strain; Microstructural evidence, inconsistencies. Part I: Substructure evolution; Grain interactions, Metall. Sci. Technol., 28, 2010, p.12–21.
[66] B. Verlinden, A. Suhadi, L. Delaey, A generalized constitutive equation for an AA6060 aluminium alloy, Scr. Metall., 28, 1993, p.1441–1446.
[67] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, second ed., Elsevier Ltd., Oxford, UK, 2004.
[68] C. Sellars and W.M. Tegart, On the Mechanism of Hot Deformation, Acta Metall., 14, 1966, p.1136–1138
[69] C. Sellars and W.M. Tegart, Hot Workability, Int. Metall. Rev., 17, 1972, p.1–24
[70] Hull, B. & Bacon, D.J., Introduction to dislocations. 4th ed. Oxford, Butterworth-Heinemann, 2001.
[71] Callister, W.D. Jr., Materials science and engineering, an introduction. 5th ed. New York: John Wiley & Sons, Inc, 2000.
[72] Kocks, U.F.& Mecking, H., Physics and phenomenology of strain hardening: the FCC case. Progress in Materials Science, 48, 2003, p.171-273.
[73] Rios, Paulo Rangel, Siciliano Jr, Fulvio, Sandim, Hugo Ricardo Zschommler, Plaut, Ronald Lesley, & Padilha, Angelo Fernando. Nucleation and growth during recrystallization. Materials Research, 8, 2005, p.225-238.
[74] E. A. Holm, T. D. Hoffmann, A. D. Rollett, and C. G. Roberts, Particle-assisted abnormal grain growth, IOP Conference Series: Materials Science and Engineering, 89, 2015, pp.012005.
[75] J. Dennis, P. S. Bate and F. J. Humphreys, Abnormal grain growth in metals, Materials Science Forum, 558-559, 2007, pp.717-722. |