博碩士論文 102389004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.118.205.146
姓名 陳智堯(Chih Yao Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 利用表面陽極處理調變液態鎵奈米顆粒形貌及其光學性質
(Oxidation-mediated changes in morphology and optical properties of liquid gallium nanoparticles)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-4-13以後開放)
摘要(中) 由於鎵金屬本身性質具有無毒、室溫為液態與緻密氧化層等特性,且鎵奈米顆粒有較高的等離子體能量 (plasma energy(14 eV)),並可藉由改變它們的形狀和大小,來調變局部表面電漿子共振 (localized surface plasmon resonance, LSPR) 特徵範圍,可獲得從紫外波段到可見波段調控的優勢,因此為近年來電漿子學中熱門研究主題之一。
我們利用表面陽極處理方式改變液態鎵奈米顆粒表面形貌而形成窩坑結構(dimple structure),其中電壓與反應時間將影響鎵奈米顆粒表面凹陷程度,其形成原因來液態鎵金屬表面能變化與氧化層生成時所產生的壓應力造成淺層凹痕,此凹痕導致後續的陽極反應集中於特定區域造成嚴重變形形成dimple結構。透過XPS計算陽極處理過程中氧化層生成之厚度,並利用熱氧化法與FDTD模擬結果說明本研究中氧化層對紅移現象影響有限,藉此證明液態Ga NPs的形貌變化為造成LSPR特徵波峰波長發生紅移現象的主要原因。
利用此方式可調變Ga NPs的LSPR特徵波峰波長之最大紅移量達77 nm左右,透過FDTD模擬不同凹陷程度之光學變化,此結果與實驗結果具有相同趨勢進行,並由近場分佈顯示金屬表面尖端與銳利邊緣區域產生”熱點”(hotspots),此尖端與銳利邊緣是伴隨凹陷結構所產生。透過此方式我們以短時間(反應時間10秒以內)與簡易製程方式即可調整液態Ga NPs之LSPR特徵波峰波長位置。
摘要(英) Gallium, whose melting point is near the room temperature, is relatively non-toxic and will form the compact oxide layer. With a bulk plasmon resonance energy of 13.9 eV, Ga has recently been proved to be a good candidate for UV plasmonics with a Drude-like dielectric function extending from the vacuum ultraviolet into the infrared spectral region.
In this work, the dimple textures were formed on the surface of gallium nanoparticles (Ga NPs) through the anodization treatment, using the applied voltage and the reaction time to control the degree of deformation. During the treatment, the increasing oxide layer would produce the compression stress, leading the formation of dimple textures. The nanoscale dimple-like textures led to changes in the localized surface plasmon resonance (LSPR) wavelength. A maximal LSPR red-shift of ~77 nm was preliminarily achieved using an anodization voltage of 0.7 V.
The finite-difference time-domain (FDTD) simulations also suggested that the LSPR tunability was primarily determined by the shape of the deformed particles, which was also in good agreement with the trend in the LSPR shift obtained from the experimental results. The near electric field simulated by FDTD was concentrated near spikes or narrow walls, and thus the hotspots could clearly be observed. The extent of particle deformation could be adjusted in a very short period of anodization time (~7 s), which offers an efficient way to tune the LSPR response of Ga NPs.
關鍵字(中) ★ 陽極處理
★ 局域性表面電漿子共振
★ 液態鎵奈米顆粒
關鍵字(英) ★ Anodization
★ Localized surface plasmon resonance
★ liquid gallium nanoparticles
論文目次 摘要 i
Abstract ii
致謝 iii
第一章 緒論 1
第二章 文獻回顧 2
2-1電漿子光學 (Plasmonic) 2
2-1-1電漿子光學的發展 2
2-1-2表面電漿子共振 2
2-1-3影響電漿子共振的因素 3
2-2鎵 9
2-2-1鎵奈粒子之LSPR特徵 10
2-2-2氧化鎵層對電漿子共振的影響 11
2-2-3外加電壓對液態鎵金屬形貌變化之影響 13
2-3電漿子光學調控方法 14
2-3-1調變液體溶液的pH值 14
2-3-2電化學氧化還原反應 15
2-3-3機械式變形可撓式彈性體基板 16
第三章 研究方法 17
3-1研究動機與實驗架構 17
3-2 實驗步驟 18
3-3製程設備與分析儀器 18
3-4有限差分時域法(FDTD)模擬液態鎵奈米顆粒之設置架構 19
第四章 結果與討論 21
4-1陽極處理液態鎵奈米顆粒之探討 21
4-1-1 探討不同厚度下鎵奈米顆粒分佈特性 21
4-1-2探討陽極處理對鎵奈米顆粒形貌變化之影響 22
4-1-3 探討陽極處理過程中氧化層對Ga NPs形貌變化之影響 28
4-1-4 探討不同反應電壓下對鎵奈米顆粒之影響 32
4-2表面陽極處理之液態Ga NPs光學性質 35
4-2-1 探討影響Ga NPs的LSPR特徵波長之因素 35
4-2-2模擬陽極處理Ga NPs之LSPR特性 39
第五章結論 43
參考文獻 44
參考文獻 [1] R. W. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum.”, Philosophical Magazine, Vol 4, pp. 396~402, April 2009.
[2] U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld′s Waves) .”, Journal of the Optical Society of America, Vol 31, pp.213~222, March 1941.
[3] A. Hessel and A.A.Oliner. A, “ A New Theory of Wood’s Anomalies on Optical Gratings. ”, Applied Optics, Vol 4, pp. 1275~1297, May 1965.
[4] F. J .Garcia-Vidal, L.Martin-Moreno, T. W. Ebbesen and L. Kuipers “ Light passing through subwavelength apertures. ”, Reviews of Modern Physics, Vol 82, pp. 729~787, March 2010.
[5] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi. , T. Thio and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays.”, NATURE, Vol 391, pp. 667~669, February 1998.
[6] W. C. Tan, T. W Preist, J. R. Sambles and N. P. Wanstall, “ Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings.”, Physical Review B, Vol 59, pp. 12661~12666, May 1998.
[7] J. A. Porto, F. J. García-Vidal and J. B.Pendry “ Transmission Resonances on Metallic Gratings with Very Narrow Slits.”, Physical Review Letters, Vol 83, pp. 2845~2848, April 1999.
[8] L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays.”, Physical Review Letters, Vol 86, pp. 1114~1117, August 2000.
[9] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang and Y. Xia, “Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications.”, Chemical Reviews, Vol 98, pp. 3669~3712, March 2011.
[10] S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures.”, Journal of Applied Physics, Vol 98, pp. 011101, July 2005.
[11] K. A. Willets,. R. P. R.. Duyne, “Localized Surface Plasmon Resonance Spectroscopy and SensingRev.”, Journal of Applied Physics, Vol 58, pp.267~297, October 2006.
[12] E. J. Zeman, G. C. Schatz, “An Accurate Electromagnetic Theory Study of Surface Enhancement Factors for Ag, Au, Cu, Li, Na, AI, Ga, In, Zn, and Cd.”, Journal of Physical Chemistry, Vol 91, pp. 634~643, October 1987.
[13] J. Henzie, M. H. Lee and T. W. Odom. “Multiscale patterning of plasmonic metamaterials.”, Nature Nanotechnology, Vol 2, pp. 549~554, August 2007.
[14] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications.”, Chemical reviews, Vol 111, pp.3669~3712, March 2011.
[15] S. Link, M. A. E. Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles.”, The Journal of Physical Chemistry B, Vol 103, pp. 4212~4217, May 1999.
[16] Lombardi, M. Loumaigne, A. Crut, P. Maioli, N. Del Fatti, and F. Valle, “Surface Plasmon Resonance Properties of Single Elongated Nanoobjects: Gold Nanobipyramids and Nanorods.”, Langmuir, Vol28, pp. 9027−9033, February 2012.
[17] Pae C Wu, “Plasmonic Gallium Nanoparticles – Attributes and Applications.”, Duke University, 2009
[18] R. H. J. Doremus, “Optical Properties of Small Gold Particles.”, The Journal of Chemical Physics, Vol 40, pp. 2389~23296, April 1964.
[19] M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics .”, ACS Nano, Vol 8, pp. 834~840, November 2014.
[20] Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek,F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles.”, Journal of Applied Physics, Vol 112, pp. 103531, November 2012.
[21] X. F. Li, G. T. Fei, X. M. Chen, Y. Zhang, K. Zheng, X. L. Liu and L. D. Zhang EPL (Europhysics Letters), 94, 1, (2011).
[22] F. Greuter and P. Oelhafen, “Conduction electrons in solid and liquid gallium.”, Zeitschrift für Physik B Condensed Matter and Quanta, Vol 34, pp. 123-128, February 1979.
[23] K. K. Nanda, S. N. Sahu, and S. N. Behera, “Liquid-drop model for the size-dependent melting of low-dimensional systems.”, Physical Review A, Vol 66,
A. 013208, July 2002.
[24] J. Bowen, D. Cheneler, A. P. G. Robinson, “Direct e-beam lithography of PDMS.”, Microelectronic Engineering, Vol 97, pp. 34~37, March 2012.
[25] M. Ohring, The Materials Science of Thin Films., October 1992.
[26] S. Catalán-Gómez, A. Redondo-Cubero, F. Palomares, F. Nucciarelli and J. L. Pau, Nanotechnology, Vol 28, pp. 405705, September 2017.
[27] Y. Gutierrez, D. Ortiz, J. M. Sanz, J. M. Saiz, F. Gonzalez, H. O. Everitt and F. Moreno, “How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures.”, Optics Express, Vol. 24, pp. 20621-20631, 2016.
[28] C. B. Eaker, D. C. Hight, J. D. O’Regan, M. D. Dickey, and K. E. Daniels, “Oxidation-Mediated Fingering in Liquid Metals.”, PHYSICAL REVIEW LETTERS, Vol 119, pp. 174502(p5), OCTOBER 2017.
[29] J. T. H. Tsai, C. M. Ho, F.C. Wang, and C. T. Liang, “Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium.”, APPLIED PHYSICS LETTERS, Vol 95, pp. 251110 (p3), 2009.
[30] S. M. Troian, X. L. Wu, and S. A. Safran, ”Fingering Instability in Thin Wetting Films.”, Physical review letters, Vol 62, pp.1496, 1989.
[31] R. H. J. Doremus, “Optical Properties of Small Gold Particles.”, The Journal of Chemical Physics, Vol 40, pp. 2389~2396, April 1964.
[32] Zhao, Y, “Reversible Plasmonic Probe Sensitive for pH in Micro/Nanospaces Based on i Motif-Modulated Morpholino-Gold Nanoparticle Assembly.”, Analytical Chemistry, Vol 85, pp. 1053-1057, December 2012.
[33] T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds and V. V. Tsukruk, “Electrically Tunable Plasmonic Behavior of Nanocube-Polymer Nanomaterials Induced by a Redox-Active Electrochromic Polymer .”, ACS Nano, Vol 8, pp. 6182-6192, May 2014.
[34] M. Kang, J.-J. Kim, Y.-J. Oh, S.-G. Park and K.-H. Jeong , “A Deformable Nanoplasmonic Membrane Reveals Universal Correlations Between Plasmon Resonance and Surface Enhanced Raman Scattering.”, Advanced Material, Vol 26, pp. 4510–4514, March 2014.
[35] E. D. Palik, “Handbook of Optical Constants of Solids.”, Academic Press: San Diego, CA, USA, 1998.
[36] P. Ghigna, G. Spinolo,; G. B. Parravicini,; A. Stella, A.A. Migliori, R. Kofman, “Metallic versus Covalent Bonding: Ga Nanoparticles as a Case Study.”, Journal of the American Chemical Society, Vol 129, pp. 8026–8033, 2007
[37] P. W. Voorhees, “The Theory of Ostwald Ripening.”, Journal of Statistical Physics, Vol. 38, pp. 231–252, 1985.
[38] J. H. Yao, K. R. Elder, H. Guo, and M. Grant, “Theory and simulation of Ostwald ripening.”, PHYSICAL REVIEW B, Vol 47, No. 21, JUNE 1993.
[39] J. Downs, Ed. Chemistry of Aluminum, Gallium, Indium and Thallium; Blackie Academic & Professional, London, 1993.
[40] Pandey, P. S. Thapa, D. A. Higgins, and T. Ito, “Formation of Self-Organized Nanoporous Anodic Oxide from Metallic Gallium.” Langmuir, Vol 28, pp. 13705−13711, 2012.
[41] S. Z. Chu,a, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumorib, “Large-Scale Fabrication of Ordered Nanoporous Alumina Films with Arbitrary Pore Intervals by Critical-Potential Anodization”, Journal of The Electrochemical Society, Vol 153, No. 9,pp. B384-B391, 2006.
[42] Diggle, J. W.; Downie, T. C.; Goulding, C. W. “Anodic Oxide Films on Aluminum.” Chemical Reviews, Vol 69, pp. 365−405, 1969.
[43] J. Zhang, L. Sheng and J. Liu, “Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects.”, Scientific Reports, Vol 4, pp.7116 (p4), November 2014.
[44] J. Siejka and C. Ortega, “Study of Field-Assisted Pore Formation in Compact Oxide Films on Aluminium”, The Journal of the Electrochemical Society, Vol 124, pp. 883- 891, 1977.
[45] Diggle, J. W.; Downie, T. C.; Goulding, C. W. “Anodic Oxide Films on Aluminum.” Chemical Reviews, Vol 69, pp. 365−405, 1969.
[46] L. Bosio, C.G. Windsor, “Observation of a Metastability Limit in Liquid Gallium.”, Physical Review Letters, Vol 35, pp. 1652–1655, 1975.
[47] M. Yarema, M. Wörle, M.D. Rossell, R. Erni, R. Caputo, L. Protesescu, K.V. Kravchyk, D.N. Dirin, K. Lienau, F. von Rohr, “Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage.”, The Journal of the American Chemical Society, Vol 136, pp. 12422, 2014.
[48] K.T. Lee, Y.S. Jung, T. Kim, C.H. Kim, J.H. Kim, J.Y. Kwon, S.M. Oh, “Liquid Gallium Electrode Confined in Porous Carbon Matrix as Anode for Lithium Secondary Batteries.”, Electrochem. Solid-State Letters, Vol 11, pp. A21–A24, 2008.
[49] S. Catalán-Gómez, A. Redondo-Cubero, F.J. Palomares, F. Nucciarelli, J.L. Pau, “Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperatures.”, Nanotechnology, Vol 28, 405705 (pp.11), 2017.
[50] N. Sato, “A theory for breakdown of anodic oxide films on metals ”, Electrochimica Acta, Vol 16, pp. 1683, 1971.
[51] Çapraz, Ö.Ö.; Shrotriya, P.; Hebert, K.R. Measurement of Stress Changes during Growth and Dissolution of Anodic Oxide Films on Aluminum. J. Electrochem. Soc., Vol 161, pp. D256–D262. 2014.
[52] K. Shimizu and K. Kobayas, “Development of porous anodic films on aluminium.”, PHLOSOPHICAL MAGAZINAE A, 1992, VOL. 66, No. 4, pp.643-652, 1992.
[53] Sachiko Ono, z Makiko Saito, Miyuki Ishiguro, and Hidetaka Asoh, Controlling Factor of Self-Ordering of Anodic Porous Alumina, Journal of The Electrochemical Society, Vol 151, pp. B473-B478. 2004.
[54] G.E. Thompson, “Porous anodic alumina: fabrication, characterization and applications.”, Thin Solid Films, Vol 297, pp. 192–201, 1997.
[55] T.P. Hoar, N.F. Mott, ”A mechanism for the formation of porous anodic oxide films on aluminium” , J. Phys Chem. Solids, Vol 9, pp.97, 1959.
[56] S.J. Garcia-Vergara, P. Skeldon, G.E. Thompsona, H. Habazaki, “A flow model of porous anodic film growth on aluminium.”, Electrochimica Acta, Vol 52, pp. 681–687, 2006.
[57] R. Li, L. Li, T. Yu, L. Wang, J. Chen, Y. Wang, Z. Cai, J. Chen, M. L. Rivers, H. Liu, “Study of liquid gallium as a function of pressure and temperature using synchrotron xray microtomography and x-ray diffraction.”, Applied Physics Letters, Vol 105, July 2014.
[58] M, Losurdo, A. Suvorova, S. Rubanov, K. Hinger and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles.”, Nature Materials, Vol 15, pp. 995~1002, July 2016.
[59] R. Carli, C.L. Bianchi, “XPS analysis of gallium oxides.”, Applied Surface Science, Vol 74, pp. 99-102, September 1993.
[60] F. J. Palomares, M. Alonso, I. Jiménez, J. Avila, J. L. Sacedon, F. Soria, “Electron-beam-induced reactions at O2/GaAs(100) interfaces.”, Surface Science, Vol 74, pp. 99~102, January 1994.
[61] Gocalinska, S. Rubini, E, “Pelucchi, Native oxides formation and surface wettability of epitaxial III–V materials: The case of InP and GaAs.”, Applied Surface Science, Vol 383, pp. 19~27, October 2016.
[62] S. C. Gómez, A. Redondo-Cubero, F. J. Palomares, L. Vázquez, E. Nogales, F. Nucciarelli, B. Mendez, N. Gordillo, J. L. Pau, “Size-selective breaking of the core–shell structure of gallium nanoparticles.”, Nanotechnology, Vol 29, pp.355707, June 2018.
[63] C. C .Surdu-Bob, S. O. Saied, J. L. Sullivan, “An X-ray photoelectron spectroscopy study of the oxides of GaAs.”, Applied Surface Science, Vol 183, pp. 126–136, September 2001.
[64] G. Shard, “A Straightforward Method For Interpreting XPS Data From Core–Shell.”, Journal of Physical Chemistry C, Vol 116, pp. 16806–16813, July 2012.
[65] C.J. Powell and A. Jablonski, “The NIST Electron Effective-Attenuation-Length Database.”, Journal of Surface Analysis, Vol 9, pp. 322~325, February 2002.
[66] R. Ma, Y. X. Zhou, J. Liu, “Erasing and Correction of Liquid Metal Printed Electronics Made of Gallium Alloy Ink from the Substrate.”, Applied Physics, June 2017.
[67] Guentherschulze, H. Betz, Z. Phys. Physik, Vol 92, pp. 367, 1934.
[68] W. Lee, and S. J. Park, “Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures .”, Chemical Reviews, Vol 114, pp. 7487−7556, June 2014.
[69] S. C. Gómez, A. Redondo-Cubero, F. J. Palomares, F. Nucciarelli and J. L. Pau, “Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperatures.”, Nanotechnology, Vol 28, pp. 405705, August 2007.
[70] Y. Gutierrez, D. Ortiz, J. M. Sanz, J. M. Saiz, F. Gonzalez, H. O. Everitt and F. Moreno, “How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures.”, Optics Expres, Vol 24, pp. 20621~20631, September 2016.
[71] K. D. Gibson, H. A. Scheraga, “Volume of the intersection of three spheres of unequal size: A simplified formula.”, Journal of Physical Chemistry, Vol 91, pp. 4121~4122, December 1987.
[72] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment.”, Journal of Physical Chemistry B, Vol 107, pp. 668~677, January 2003.
[73] J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV Plasmonic Behavior of Various Metal Nanoparticles in the Nearand Far-Field Regimes: Geometry and Substrate Effects.”, Journal of Physical Chemistry C, Vol 117, pp. 19606~19615, August 2013.
[74] C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, “Single gold nanostars enhance Raman scattering.”, Applied Physics Letters, Vol 94, pp.153113, April 2009.
[75] F. Hao, C. L. Nehl, J. H. Hafner and P. Nordlander, “Plasmon Resonances of a Gold Nanostar.”, Nano Letters, Vol. 7, pp. 729~732, April 2007.
[76] H. Tang, C. Zhu, G. Meng and N. Wu , “Review—Surface-Enhanced Raman Scattering Sensors for Food Safety and Environmental Monitoring .”, Journal of The Electrochemical Society, Vol 165, pp. 3098~3118, April 2018.
指導教授 陳一塵(I Chen Chen) 審核日期 2022-4-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明