博碩士論文 102389005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:54.234.190.237
姓名 曾昱縉(Yu-Jin Zeng)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 奈米金屬氧化物於生醫材料與捕捉癌細胞之應用
(Nano-structured Metal Oxides for Bio-implants and Capturing Cancer Cell)
相關論文
★ 氫離子佈植對矽鍺/矽異質結構應變釋放之研究及矽鍺奈米線之製作★ 利用原子力顯微鏡結合選擇性化學蝕刻法分析自組裝矽鍺量子點成分分佈之研究
★ 利用新穎奈米遮罩製備低維度矽鍺奈米結構及其光電性質之研究★ 利用奈米球微影術與金輔助化學蝕刻法形成矽鍺奈米柱陣列之研究
★ 第三元素對於鎳矽化物形成於矽及矽碳基板之影響★ 應用於太陽光電之自潔性及低反射率之矽與矽鍺奈米孔洞陣列
★ 奈米結構化氧化鋁鋅薄膜之製作與光電性質研究★ 鉑矽化物於矽碳磊晶層上生成行為及其熱穩定性之探討
★ 離子佈植對鎳合金矽化物之影響★ 以靜電紡絲技術製備二氧化鈦奈米纖維之研究
★ 二氧化鈦基表面增強拉曼基板之製作與檢測★ 自組裝複合式鍺量子點成長機制及其應用之研究
★ 超薄鎳合金磊晶矽化物生成行為與熱穩定性研究★ 以銀/二氧化鈦奈米複合結構提升染料敏化太陽能電池效率
★ 鍺誘發二氧化鈦奈米線成長機制及其應用之研究★ 矽鍺奈米異質結構之製備與應用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2020-10-1以後開放)
摘要(中) 生物技術領域中,材料表面形貌和化學修飾對細胞的相容性和相互作用扮演重要的角色。
本論文第一部分探討生物相容性,利用陽極氧化法製備出不同尺寸管徑的鉭氧化物奈米管,生物相容性的體外實驗顯示,纖維母細胞在具潤濕性的鉭氧化物表面具有良好的行為。細胞於 35 奈米管徑下,顯示具有最佳的生物相容性。適當尺寸的奈米管和表面粗糙化可以增加細胞對鉭金屬片的相容性。
第二部分發展有效分離鼻咽癌循環腫瘤癌細胞的基板。用靜電紡絲技術製備出不同密度的二氧化鈦奈米纖維。進一步將抗體修飾於二氧化鈦表面,進行體外的鼻咽癌循環腫瘤癌細胞捕捉,再用螢光免疫法進行評估。結果顯示高密度的二氧化鈦奈米纖維捕捉癌細胞的能力比低密度的強。經抗體修飾後的高密度的二氧化鈦奈米纖維可以有效捕捉癌細胞,未來可能具有臨床應用的潛力。
摘要(英) In the field of bio-technology, surface morphology and chemical modification of biomaterials play important roles in the biocompatibility and interaction between cells and
materials.
The first study investigated the biocompatibility of self-organized TaOx nanotubes arrays with different nanotubes diameters fabricated by electrochemical anodization. In vitro biocompatibility evaluation indicated that fibroblast cells exhibit an obvious wettability-dependent behavior on the TaOx nanotubes. The 35-nm-diameter TaOx nanotubes arrays revealed the highest biocompatibility among all samples. This work demonstrates that the biocompatibility in Ta can be significantly improved by forming TaOx nanotubes arrays on the surface with appropriate nanotubes diameter and geometric roughness.
The second part was to develop an effective platform for isolation of circulating tumor cells (CTCs) of nasopharyngeal carcinoma (NPC). Self-organized titanium oxide (TiO2) nanofibers of different densities were fabricated by electrospinning method. Anti-EpCAM antibodies were further conjugated on the TiO2 nanofibers to capture NPC CTCs in vitro and evaluated by
mmunofluorescence. The results demonstrated that high-density TiO2 nanofibers showed better NPC CTCs capturing performance than the low-density ones. Moreover, TiO2
nanofibers prepared with higher concentration of ant-pCAM antibody showed better cell capturing ability. The high-density TiO2 nanofibers conjugated with anti-EpCAM antibodies can capture the CTCs of NPC effectively, which may have the potential for future clinical application.
關鍵字(中) ★ 鉭氧化物
★ 二氧化鈦
★ 奈米管
★ 奈米纖維
★ 循環腫瘤細胞
★ 鼻咽癌
關鍵字(英) ★ TaOx
★ TiO2
★ Nanotubes
★ Nanofibers
★ circulating tumor cells
★ nasopharyngeal carcinoma
論文目次 摘要 ...................................................I
Abstract...............................................II
致謝..................................................III
Contents...............................................IV
List of Figures........................................VI
List of Tables..........................................X
Chapter 1 Introduction..................................1
1.1 Cell adhesion.......................................1
1.1.1 Biomaterials......................................1
1.1.2 Tantalum .........................................3
1.1.3 Biomedical application of tantalum................4
1.1.4 Influence of porous tantalum on biocompatibility..7
1.1.5 Anodization.......................................8
1.2 Biomedical applications of titanium nanofibers.....11
1.2.1 Drug delivery system.............................11
1.2.2 Detecting Circulating Tumor Cells................14
1.2.3 Nasopharyngeal carcinoma.........................15
1.2.4 Circulating tumor cells..........................16
Chapter 2 Experimental Procedures......................17
2.1.1 Preparation of TaOx nanotubes....................18
2.1.2 Materials characterization.......................19
2.1.3 Human fibroblast cell culture ...................20
2.1.4 Cell adhesion assay..............................21
2.1.5 Cell proliferation assay.........................22
2.1.6 Scanning electronic microscopy (SEM).............23
2.1.7 Statistical analysis.............................23
2.2.1 Electrospinning of TiO2 nanofibers...............25
2.2.2 Modification of electrospun TiO2 nanofibers......26
2.2.3 NPC cell culture.................................27
2.2.4 Cell capture.....................................28
2.2.5 Cell detection...................................29
2.2.6 Scanning electronic microscopy (SEM) ............30
2.2.7 Statistical Analysis.............................30
Chapter 3 The Effect of Difference TaOx Nanotubes Size for Biocompatibility...................................31
3.1 Results and Discussion.............................31
Chapter 4 The Effect of Difference TiO2 Nanofibers Density for Cancer Detection...........................35
4.1 Results and Discussion.............................35
Chapter 5 Conclusion...................................39
Figures................................................40
References.............................................53
參考文獻 [1] K. Anselme,“Osteoblast adhesion on biomaterials”, Biomaterials, 2000, 21, 667 – 681.
[2] B. Kasemo,“Biological Surface Science”, Surface Science, 2002, 500, 656 – 676.
[3] M. M. Stevens and J. H. George, “Exploring and Engineering the Cell Surface Interface”, Science, 2005, 310, 1135 – 1138.
[4] I. ?i?ak, O. Paris, P. Roschger, S. Bernstorff, H. Amenitsch, K. Klaushofer and P. Fratzl, “Investigation of Bone and Cartilage by Synchrotron Scanning-SAXS and –WAXD with Micrometer Spatial Resolution”, Journal of Applied Crystallography, 2000, 33, 820 – 823.
[5] A. Curtis, C. Wikinson, “Nantotchniques and Approaches in Biotechnology”, Trends Biotechnol, 2001, 19, 97 – 101.
[6] M. Dalby, N. Gadegaard, R. Tare, A. Andar, M. O. Riehle, P. Herzyk, C. D. Wilkinson and R. O. Oreffo, “The Control of Human Mesenchymal Cell Differentiation Using Nanoscale Symmetry, and Disorder”, Nature Mater, 2007, 6, 997 – 1003.
[7] M. J. Dalby, M. O. Riehle, D. S. Sutherland, H. Agheli and A. S. G. Curtis, “Fibroblast Response to Controlled Nanoenviroment Produced by Colloidal Lithography”, Journal of Biomedical Materials Research Part A, 2005, 69A, 314 – 320.
[8] J. M. Rice, J. A. Hunt, J. A. Gallagher, P. Hanarp, D. S. Sutherland and J. Gold, “Quantitative Assessment of the Response of Primary Derived Human Osteoblasts and Macrophages to a Range of Nanotopography Surfaces in a Single Culture Model in vitro”, Biomaterials, 2003, 24, 4799 – 4818.
[9] M. J. Dalby, C. C. Berry, M. O. Riehle, D. S. Sutherland and H. Agheli, A. S. G. Curtis, “Attempted Endocytosis of Nnaoenviroment Produced by Colloidal Lithography by Human Fibroblast”, Experimental Cell Research, 2004, 295, 387 – 394.
[10] M. J. Dalby, M. O. Riehle, D. S. Surtherland, H. Agheli and A. S. G. Curtis, “Morphology and Microarray Analysis if Human Fibroblasts Cultured on Nanocolumns Produced by Colloidal Lithography”, European Cells and Materials, 2005, 9, 1 – 8.
[11] M. J. Dalby, S. J. Yarwood, M. O. Riehle, H. J. H. Johnstone, S. Affrossman and A. S. G. Curtis, “Increasing Fibroblast Response to Materials Using Nanotopography of Cell Response to 13-nm-High Polymer Demixed Islands”, Experimental Cell Research, 2002, 276, 1 – 9.
[12] M. J. Dalby, S. Child, M. O. Riehle, H. J. H. Johnstone, S. Affrossman and A. S. G. Curtis, “Fibroblast Reaction to Island Topography: Changes in Cytoskeleton and Morphology with Time”, Biomaterials, 2003, 24, 927 – 935.
[13] . P. Pennisi, C. Sevcencu, A. Dolatshahi-Pirouz, M. Foss, J. L. Hansen, A. N. Larsen, V. Zahar, F. Besenbacher and K. Yoshida, “Response of Fibroblast an Glial Cells to Nanostructured Platinum Surfaces”, Nanotechnology, 2009, 20, 385103.
[14] C. C. Berry, M. J. Dalby, D. McCloy and S. Affrossman, “The Fibroblast Responese to Tubes Exhibiting Internal Topography”, Biomaterials, 2005, 26, 4985 – 4992.
[15] Harris W. H., “Wear and Periprosthetic Osteolysis: The Problem”, Clinical Orthopaedics and Related Research, 2001, 393, 66 – 70.
[16] C. B. Johansson and T. Albrektsson, “A Removal Toruqe and Histomorphometric Study of Commercially Pure Niobium and Titanium Implants in Rabbit Bone”, Clinical Orthopaedics and Related Research, 1991, 2, 24 – 29.
[17] I. Abrahamsson, N. U. Zitzmann, T. Berglundh and J. Lindhe, “Bone and Soft Tissue Integration to Titanium Implants with Different Surface Topography: An Experimental Study in the Dog”, International Journal of Oral and Maxillofacial Surgery, 2001, 16, 323 – 332.
[18] D. Olmedo, M. M. Fernandez, M. B. Guglielmotti and R. L. Cabrini, “Macrophages Related to Dental Implant Failure”, Implant Dentistry, 2003, 12, 75 – 80.
[19] A.W. Tan, B. Pingguan-Murphy, R. Ahmad and S. A. Akbar, “Review of Titania Nanotubes: Fabrication and Cellular Response”, Ceramics International, 2013, 38, 4421 – 4435.
[20] D. Buser, R. K. Schenk, S. Steinemann, J. Fiorellini, C. Fox and H. Stich, “Influence of Surface Characteristics on Bone Integration of Titanium Implants. A Histomorphometric Study in Miniature Pigs”, Journal of Biomedical Materials Research, 1991, 25, 889 – 836.
[21] S. Hansson and M. Norton, “The Relation Between Surface Roughness and Interfacial Shear Strength for Bone-Anchored Implants. A Mathematical Model”, Journal of Biomechanics, 1999, 32, 829 – 836.
[22] J. E. Davies, “Understanding Peri-Implant Endosseous Healing”, Journal of Dental Education, 2003, 76, 932 – 949.
[23] P. T. Oliveira and A. Nanci, “Nanotexturing of Titanium-Based Surfaces Upregulates Expression of Bone Sialoprotein and Osteopontin by Cultured Osteogenic Cells”, Biomaterials, 2004, 25, 403 – 413.
[24] G. Mendonca, D. B. S. Mendonca, F. G. L. Aragao and L. F. Cooper, “Advancing Dental Implant Surface Technology-From Micron- to Nnanotopography:, Biomaterials, 2008, 29, 3822 – 3835.
[25] W. E. Yang, M. L. Hsu, M. C. Lin, Z. H. Chen, L. K. Chen and H. H. Huang, “Nano/Submicron-Scale TiO2 Network on Titanium Surface for Dental Implant Application”, Journal of Alloys and Compounds, 2009, 479, 642 – 647.
[26] Y. Wang, C. Wen, P. Hodgson and Y. Li, “Biocompatibility of TiO2 Nanotubes with Different Topographies”, Journal of Biomedical Materials Research Part A, 2014, 102, 743 – 751.
[27] J. Park, S. Bauer, K. von der Mark and P. Schmuki, “Nanosize and Vitality: TiO2 Nanotube Diameter Directs Cell Fate”, Nano Letter, 2007, 7, 1686 – 1691.
[28] K. Das, S. Bose and A. Bandyopadhyay, “TiO2 Nnanotubes on Ti: Influence of Nanoscale Morphology on Bone Cell-Materials Interaction”, Journal of Biomedical Materials Research Part A, 2009, 09, 225 – 237.
[29] Z. Li, R. Yang, M. Yu, F. Bai, C. Li and Z. L. Wang, “Cellular Level Biocompatibility and Biosafety of ZnO Nanowires”, The Journal of Physical Chemistry C, 2008, 112, 20114 – 20117.
[30] N. K. Verma, J. Conroy, P. E. Lyons, J. Coleman, M. P. O’Sullivan, H. Kornfeld, D. Kelleher and Y. Volkov, “Autophagy Induction by Silver Nanowires: A New Aspect in the Biocompatibility Assessment of Nanocomposite Thein Films”, Toxicology and Applied Pharmacology, 2012, 264, 451 – 461.
[31] W. Q. Zhang, Y. Lu, T. K. Zhang, W. Xu, M. Zhang and S. H. Yu, “Controlled Synthesis and Biocompatibility of Water-Soluble ZnO Nanorods/Au Nanocomposites with Tunable UV and Visible Emission Intensity”, The Journal of Physical Chemistry C, 2008, 112, 19872 – 19877.
[32] A. Kopwitthaya, K. T. Yong, R. Hu, I. Roy, H. Ding. L. A Vathy, E. J Bergey and P. N Prasad, “Biocompatible PEGylated Gold Nanordes as Colored Contrast Agents for Targeted in vivo Cancer Applications”, Nanotechnology, 2010, 21, 315101 – 3150111.
[33] R. Gopikrishnan, K. Zhang, P. Ravichandran, S. Baluchamy, V. Ramesh, S. Biradar, P. Ramesh, J. Pradhan, J. C. Hall, A. K. Pradhan and G. T. Ramesh, “Synthesis, Characterization and Biocompatibility Studies of Zinc Oxide (ZnO) Nanorods for Biomedical Application”, Nano-Miro Letters, 2010, 2, 31 – 36.
[34] S. Dong, X. Chen, L. Gu, L. Zhang, X. Zhou, Z. Liu, P. Han, H. Xu, J. Yao, X. Zhang, L. Li, C. Shang and G. Cui, “A Biocompatible Titanium Nitride Nanorods Derived Nanostructured Electrode for Biosensing and Bioelectrochemical Energy Conversion”, Biosensors and Bioelectronics, 2011, 26, 4088 – 4094.
[35] R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde and M. Sastry, “Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview”, Langmuir, 2005, 21, 10644 – 10654.
[36] P. Aggarwal, J. B. Hall, C. B. McLeland, M. A. Dobrovolskaia and S. E. McNeil, “Nanoparticle Interaction with Plasma Proteins as It Relates to Particle Biodistribution, Biocompatibility and Therapeutic Efficacy”, Advanced Drug Delivery Reviews, 2009, 61, 428 – 437.
[37] Z. Ji, X. Jin, S. George, T. Xia, H. Meng, X. Wang, E. Suarez, H. Zhang, E. M. V. Hoek, H. Godwin, A. E. Nel and J. Zink, “Dispersion and Stability Optimization of TiO2 Nanoparticles in Cell Culture Meida”, Environmental Science and Technology, 2010, 44, 7309 – 7314.
[38] W. Dong, T. Zhang, J. Epstein, L. Cooney, H. Wang, T. Li, Y. B. Jiang, A. Cogbill, V. Varadan and Z. R. Tian, “Multifunctional Nnaowire Bioscaffolds on Titanium”, Chemistry of Materials, 2007, 19, 4454 – 4459.
[39] Z. Su, and W. Zhou, “Formation, Morphology Control and Applications of Anodic TiO2 Nanotube Arrays”, Journal of Materials Chemistry, 2011, 21, 8955 – 8970.
[40] J. C. Yu, J. Yu, W. Ho, Z. Jiang and L. Zhang, “Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nnaocrystalline TiO2 Powders”, Chemistry of Materials, 2002, 14, 3808 - -3816.
[41] A. L. Linsebigler, G. Lu and J. J. T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms and Selected Results”, Chemical Reviews, 195, 95, 735 – 758.
[42] Y. Liang, H. Wang, H. Sanchez, S. Casalongue, Z. Chen and H. Dai, “TiO2 Nanocrystals Grown on Graphene as Advanced Photocatalytic Hybrid Mateials”, Nano Research, 2010, 3, 701 – 705.
[43] J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai and H. Yang, “TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells”, Advance Materials, 2009, 21, 3663 – 3667.
[44] K. E. Lee, M. A. Gomez, S. Elouatik and G. P. Demopouls, “Further Understanding of the Adsorption Mechanism of N719 Sensitizer on Anatase TiO2 Films for DSSC Applications Using Vibrational Spectroscopy and Confocal Raman Imaging”, Langmuir, 2010, 26, 9575 – 9583.
[45] H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim and N. G. Park, “Nano-Embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells”, Advanced Materials, 2008, 20, 195 – 199.
[46] K. C. Popat, M. Eltgroth, T. J. LaTempa, C. A. Grimes and T. A. Desai, “Titania Nanotubes a Novel Platform for Drug-Eluting Coatings for Medical Implants”, Small, 2007, 3, 1878 – 1881.
[47] K. Das, S. Bose, A. Bandyopadhyay, B. Karandikar and B. L. Gibbins, “Surface Coatings for Improvement of Bone Cell Materials and Antimirobial Activities of Ti Implants”, Journal of Biomedical Materials Research Part B, 2008, 87, 455 – 460.
[48] A. L. Chun, J. G. Moralez, T. J. Webster and H. Fennniri, “Helical Rosette Nanotubes:A Biomimetic Coating for Orthopedics”, Biomaterials, 2005, 26, 7304 – 7309.
[49] K. C. Popat, L. Leoni, C. A. Grimes and T. A. Desai, “Influence of Engineered Titania Nanotubular Surfaces on Bone Cells”, Biomaterials, 2007, 28, 3188 – 3198.
[50] B3-18 S. Bauer, J. Park, K. von der Mark and P. Schmuki, “Improved Attachment of Mesenchymal Stem Cells on Super-Hydrophobic TiO2 Nanotubes”, Acta Biomaterialia, 2008, 4, 1576 – 1582.
[51] J. Park, K. von der Mark and P. Schmuki, “Nanosize and Vitality: TiO2 Nanotube Diameter Directs Cell Fate”, Nano Letter, 2007, 7, 1686 – 1691.
[52] B25-1 M. E. Pennington, “Derivatives of Colunbium and Tantalium, Journal of the American Chemical Society, 1896, 38 – 348.
[53] J. B. Park, Biomaterials Science and Engineering, New York: Plenum Press, 1984, 217.
[54] Jr. H. Plenk, M. Danhel-Mayrhauser, J. Reichsthaler and E. Schuh, “The Bone-Tantalum Interface in the Double Blade “Implandent Austria” A Clinical and Histomorphometrical Evaluation. In: Doherty PJ, Editor. Biomaterial-Tissue Interfaces, Oxford: Elsevier Science, 1992, 73.
[55] J. Black, “Biological Performance of Tantalum”, Clinical Materials, 1994, 16, 167 – 173.
[56] G. Maccauro, P. R. Iommetti, F. Muratoir, L. Raffaelli, P. F. Manicone and C. Fabbriciani, “An Overview about Biomedical Applications of Micron and Nano Size Tantalum”, Recent Patents on Biotechnology, 2009, 3, 157 – 165.
[57] Y. S. Sun, J. H. Chang and H. H. Huang, “Corrosion Resistance and Biompatibility of Tantalum Surface Coated with Amorphous Tantalum Pentoxide”, Thin Solid Films, 2013, 528, 130 – 135.
[58] M. D. Berudez, J. Francisco, F. J. Carrion. G. M. Nicolas and R. Lopez, “Erosion-Corrosion of Stainless Steels, Titanium, Tantalum and Zirconium”, Wear, 2005, 258, 693 – 700.
[59] H. Zitter and H. Plenk, “The Electrochemical Behavior of Metallic Implant Materials as an Indicator of Their Biocompatibility”, Journal of Biomedical Materials Research, 1987, 21, 881 – 896.
[60] J. Black, “Biological Performance of Tantalum”, Clinical Materials, 1994, 16, 167 – 173.
[61] H. Kato, T. Nakamura, S. Nishiguchi, Y. Matsusue, M. Kobayashi, T. Miyazaki, H. M. Kim and T. Kokubo, “Bonding of Alkali- and Heat-Treated Tantalum Implants to Bone”, Journal of Biomedical Materials Research, 2000, 53, 28 – 35.
[62] J. D. Bobyn, K. K. Toh, S. A. Hacking, M. Tanzer and J. J. Krygier, “Tissue Response to Porous Tantalum Acetabular Cups: A Canine Model”, The Journal of Arthroplasty, 1999, 14, 347 – 354.
[63] J. D. Bobyn, G. J. Stackpool, S. A. Hacking, M. Tanzer and J. J. Krygier, “Characteristics of Bone Ingrowth and Interface Mechanics of a New Porous Tantalum Biomaterial”, The Journal of Bone and Joint Surgery. British Volum, 1999, 81, 907 – 914.
[64] C. B. Johansson, H. A. Hansson and T. Albrektsson, “Qualitative Interfacial Study between Bone and Tantalum, Niobium or Commercially Pure Titanium”, Biomaterials, 1990, 11, 277 – 280.
[65] J. Radulovic, K. Serfiane and M. E. R. Shanahan, “On the Effect of pH Spreading of Surfactant Solutions on Hydrophobic Surfaces”, Journal of Colloid and Interface Science, 2009, 332, 497 – 504.
[66] V. A. Shvets, V. Sh. Aliv, D. V. Gritsenko, S. S. Shaimeev, E. V. Fedosenko, S. V. Rykhiltshi, V. V. Atuchin, V. A. Gritsenko, V. M. Tapilin and H. Wong, “Electronic Structure and Charge Transport Properties of Amorphous Ta2O5 Fims”, Journal of Non-Crystalline Solids, 354, 2008, 3025 – 3033.
[67] F. Barrere, C. M. van der Valk, G. Meijer, R. A. Dalmeijer, K. de Groot and P. Layrolle, “Osteogenecity of Octacalcium Phosphate Coatings Applied on Porous Metal Implants”, Journal of Biomedical Materials Research, 2003, 66A, 779 – 788.
[68] F. Barrere, C. M. van der Valk, G. Meijier, R. A. Dalmeijer, K. de Groot and P, Layrolle, “Osteointegration of Biomimetic Apatite Coating Applied onto Dense and Porous Metal Implants in Femurs of Goats”, Journal of Biomedical Materials Research, 2003, 67B, 655 – 665.
[69] D. M. Findlay, K. Welldon, G. J. Atkins, D. W. Howie, A. C. Zannettino and D. Bobyn, “The Proliferation and Phenotypic Expression of Human Osteolasts on Tantalum Metal”, Biomaterials, 2004, 25, 2215 – 2227.
[70] C. Wang, A. Geng, Y. Guo, S. Jiang, X. Qu and L. J. Li, “A Novel Preparation of Three-Dimensionally Ordered Macroporous M/Ti (M=Zr or Ta) Mixed Oxide Nanoparticles with Enhanced Photocatalytic Activity”, Colloid Interface Science, 2006, 301, 236 - -247.
[71] C. Chaneliere, J. L. Autran, R. A. B. Devine and B. Balland, “Tantalum Pentoixde (Ta2O5) Thin Films for Advanced Dielectric Applications”, Materials Science and Engineering R, 1998, 22, 269 – 322.
[72] S. C. Kuiry, S. Seal, W. Fei, J. Ramsdell, V. H. Desai, Y. Li, S. V. Babu and B. Wood, “Effect of pH and H2O2 on Ta Chemical Mechanical Planarization “, Journal of the Electrochemical Sociology, 2003, 150, C36 – C43.
[73] Y. Chen, J. L. G. Fierro, T. Tanaka and I. E. J. Wachs, “Supported Tantalum Oxide Catalysts: Synthesis, Physical Characterization, and Methanol Oxidation Chemical Probe Reaction”, The Journal of Physical Chemistry B, 2003, 107, 5243 – 5250.
[74] U. Jeong, Y. Wang, M. Ibisate and Y. Xia, “Some New Developments in the Synthesis, Functionalization, and Utilization of Monodisperse Colloidal Spheres”, Advanced Functional Materials, 2005, 15, 1907 – 1921.
[75] S. W. Kim, M. Kim, W. Y. Lee and T. Hyeon, “Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reaction”, Journal of the American Chemical Society, 2002, 124, 7642 – 7643.
[76] K. P. Velikov and A. van Blaaderen, “Synthesis and Characterization of Monodisperse Core-Shell Colloidal Spheres of Zinc Sulfide and Silica”, Langmuir, 2001, 17, 4779 – 4786.
[77] K. H. Rhodes, S. A. Davis, F. Caruso, B. Zhang and S. Mann, “Hieracrchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core-Shell Building Blocks”, Chemistry Materials, 2000, 12, 2832 – 2834.
[78] R. A. Caruso, A. Susha and F. Caruso, “Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres”, Chemistry Materials, 2001, 13, 400 – 409.
[79] M. L. Breen, A. D. Donsmore, R. H. Pink, S. Q. Qadri and B. R. Ratna, “Sonochemically Prodyced ZnS-Coated Polystyrene Core-Shell Particles for Use in Photonic Crystals”, Langmuir, 2001, 17, 903 – 907.
[80] A. B. Bourlinos, M. A. Karakassides and D. Petridis, “Synthesis and Characterization of Hollow Clay Microspheres Through a Resin Template Approach”, Chemical Communicaions, 2001, 16, 1518 – 1519.
[81] H. T. Schmidt and A. E. Ostafin, “Liposome Directed Growth of Calcium Phosphate Nanoshells”, Advanced Materials, 2002, 14, 532 – 535.
[82] J. Huang, Y. Xie, B. Li, Y. Liu, Y. Qian and S. Zhang, “In-Situ Source-Template-Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres”, Advanced Materials, 2000, 12, 808 – 811.
[83] B. zu Putlitz, K. Landfester, H. Fischer and M. Antonietti, “The generation of Armored Latexed and Hollow Inorganic Shells Made of Clay Sheets by Templating Cationic Miniemulsions and Latexes”, Advanced Materials, 2001, 13, 500 – 503.
[84] D. Walsh, B. Lebeau and S. Mann, “Morphosynthesis of Calcium Carbonate (Vaterite) Microsponges”, Advanced Materials, 1999, 11, 324 – 328.
[85] D. Wang and F. Caruso, “Polyelectrolyte-Coated Colloid Spheres as Templates for Sol-Gel”, Reactions Chemistry Materials, 2002, 14, 1909 – 1913.
[86] F. Caruso, R. A. Caruso and H. Mohwald, “Production of Hollow Microspheres from Nanostructured Composite Particles”, Chemistry of Materials, 1999, 11, 3309 – 3314.
[87] J. D. Bobyn, R. A. Poggie, J. J. Krygier, D. G. Lewallen, A. D. Hanssen, R. J. Lewis, A. S. Unger, T. J. O’Keefe, M. J. Christie, S. Nasser, J. E. Wood, S. D. Stulberg and M. Tanzer, “Clinical validation of a Structural Porous Tantalum Biomaterial for Adult Reconstruction”, The Journal of Bone and Joint Surgery, 2004, 86, 123 – 129.
[88] R. M. Mardones, R. Talac, A. D. Hanssen and D. G. Lewallen, “Use of a Porous Tantalum Revision Shell in Revision Total Hip Arthroplasty”, 72nd AAOS Annual Meeting, Washington, DC, 2005.
[89] A. L. Malkani, C. Crawford and D. Baker, “Acetabular Component Revision Using a Trabecular Metal Implant”, 72nd AAOS Annual Meeting, Washington, DC, 2005.
[90] H. Matsuno, A. Yokoyama, F. Watari, M. Uo and T. Kawasaki, “Biocompatibility and Osteogenesis of Refractory Metal Implants, Titanium, Hafnium, Niobium, Tantalum and Rhenium”, Biomaterials, 2001, 22, 1253 – 1262.
[91] C. A. Squier and P. Collins, “The Relationship between Soft Tissue Attachment, Epithelial Downgrowth and Surface Porosity”, Journal of Periodontal Research, 1981, 16, 434 – 440.
[92] F. Matassi, A. Botti, L. Sirleo, C. Carulli and M. Innocenti, “Porous Metal for Orthopedics Implants”, Clinical Cases in Mineral and Bone Metabolism, 2013, 10, 111 -115.
[93] S. L. Barnett, R. R. Mayer, J. S. Gondusky, L. Chiol, J. J. Patel and R. S. Gorab, “Use of Stepped Porous Titanium Metaphyseal Sleeves for Tibial Defects in Revision Total Knee Arthroplasty: Short Term Results”, The Journal of Arthroplasty, 2014, 29, 1219 – 1224.
[94] M. Zhang, G. L. Wang, H. F. Zhang, X. D. Hu, X. Y. Shi, S. Li and W. Lin, “Repair of Segmental Long Bone Defect in a Rabbit Radius Nonunion Model: Comparison of Cylindrical Porous Titanium and Hydroxyapatite Scaffolds”, Artifical Organs, 2014, 38, 493 – 502.
[95] V. K. Balla, S. Bodhak, S. Bose and A. Bandyopadhyay, “Porous Tantalum Structures for Bone Implants: Fabrication Mechanical and In Vitro Biological Properties”, Acta Biomaterialia, 2010b, 6, 3349 – 3359.
[96] G. Mohandas, N. Oskolkov, M. T. McMahon, P. Walczak and M. Janowski, “Porous Tantalum and Tantalum Oxide Nanoparticles for Regenerative Medicine”, Acta Neurobiologiae Experimentalis”, Acta Neurobiologiae Experimentails, 2014, 74, 188 – 196.
[97] P. Ducheyne, L. L. Hench, A. Kagan, M. Martens, A. Bursens and J. C. Mulier, “Effect of Hydroxyapatite Impregnation on Skeletal Bonding of Porous Coated Implants”, Journal of Biomedical Materials Research, 1980, 14, 225 – 237.
[98] J. D. Bobyn, G. J. Stackpool, S. A. Hacking, M. Tanzer and J. J. Krygier, “Characteristics of Bone Ingrowth and Interface Mechanics of a New Porous Tantalum Biomaterial”, The Bone and Joint Surgery, 1999, 81, 907 – 914.
[99] A. Frigg, H. Dougall, S. Boyd and B. Nigg, “Can Porous Tantalum be Used to Achieve Ankle and Subtalar Arthrodesis?”, Clinical Orthopaedica and Related Research, 2010, 468, 209 -216.
[100] D. L. Salzmann, L. B. Kleinert, S. S. Berman and S. K. Willians, “The Effects of Porosity on Endotheliaization of ePTFE Implanted in Subacutaneous and Adipose Tissue”, Journal of Biomedical Materials Research, 1997, 34, 463 – 476.
[101] S. A. Hacking, J. D. Bobyn,, K. Toh, M. Tanzer and J. J. Krygier, “Fibrous Tissue Ingrowth and Attachment to Porous Tantalum”, Journal of Biomedical Materials Research, 2000, 52, 631 – 638.
[102] J. S. Reach, I. D. Dickey, M. E. Zobitz, J. E. Adams, S. P. Scully and D. G. Lewallen”, Direct Tendon Attachment and Healing to Porous Tantalum: An Experimental Animal Study”, The Journal of Bone and Joint Surgery, 2007, 89, 1000 – 1009.
[103] K. Soballe, E. S. Hansen, B. R. H, P. H. Jorgensen and C. Bunger, “Tissue Ingrowth into Titanium and Hydroxyapatite-Coated Implants During Stable and Unstable Mechanical Conditions”, Journal of Orthopaedic Reseach, 1992, 10, 285 – 299.
[104] V. Zwillgin, M. Aucouturier and E. Darque-Ceretti, “Anodic Oxidation of Titanium and TA6V Alloy in Chromic Media. An Electrochemical Approch”, Electrochimical Acta, 1999, 45, 921 – 929.
[105] C. C. Chen and S. J. Hsieh, “Evaluation of Fluorine Ion Concentration in TiO2 NT Anodization Process”, Journal of The Electrochmical Society, 2010, 157, K125 – K130.
[106] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin and M. Aucouturier, “Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy”, Surface and Interface Analysis, 1999, 27, 629 – 637.
[107] J. H. Yun, H. Ng, C. Ye, A. J. Mozer, G. G. Wallace and R. Amal, “Sodium Fluoride-Assisted Modulation of Anodized TiO2 Nanotube for Dye-Sensitized Solar Cells Applicaton”, Applied Materials and Interfaces, 2011, 3, 1585 – 1593.
[108] K. Das, A. Bandyopadhyay and Bose, “Biocompatibility and In Situ Growth of TiO2 Nanotubes on Ti Using Different Electrolyte Chemistry”, Journal of the American Ceramic Society, 2008, 91, 2808 – 2814.
[109] L. N. Wang, M. Jin, Y. Zheng, Y. Guan, X. Lu and J. L. Luo, “Nanotubular Surface Modification of Metallic Implants via Electrochemical Anodization Technique”, International Journal of Nanomedicine, 2014, 9, 4421 – 4435.
[110] C. C. Chen, “Fabrication and Application of TiO2-Ta2O5 Nanochannel”, Japan-Taiwan on Intelligent Green and Orange, 2012, 13 – 14.
[111] K. Weebb, V. Hlady and P. A. Tresco, “Relative Importance of Surface Wettability and Charged Functional Groups on NIH 3T3 Fibroblast Attachment, Spreading, and Cytoskeletal Organization”, Journal of Biomedical Materials Research Part A, 1998, 41, 422 – 430.
[112] K. Das, S. Bose and A. Bandyopadhyay, “Surface Modifications and Cell-Materials Interactions with Anodized Ti”, Acta Biomaterialia, 2007, 3, 573 – 585.
[113] R. N. Wenzel, “Resistance of Solid Surfaces to Wetting by Water”, Industrial and Engineering Chemistry, 1936, 28, 988 – 994.
[114] K. Shankar, G. K Mor, H. E Prakasam, S. Yoriya, M. Paulose, O. K Varghese, C. A Grimes, “Highly-Ordered TiO2 Nanotube Arrays Up to 220 μm in Length: Use in Water Photoelectrolysis and Dye-Sensitized Solar Cells”, Nanotechnology, 2007, 18, 065707.
[115] M. J. Dalby, S. Childs, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, A. S. G. Curtis, “Fibroblast Reaction to Island Topography: Changes in Cytoskeleton and Morphology with Time”, Biomaterials, 2003, 24, 927 – 935.
[116] A. Shekaran and A. J. Garcia, “Nanoscale Engineering of Extracellular Matrix- Mimetic Bioadhesive Surface and Implants for Tissue Engineering”, Biochimica et Biophysica Acta, 2011, 1810, 350 – 360.
[117] L. M. Bjursten, L. Rasmusson, S. Oh, G. C. Smith, K. S. Brammer and S. Jin, “Titanium Dioxide Nanotubes Enhance Bone Bonding in vivo”, Journal of Biomedical Materials Research, 2010, 92A, 1218 – 1224.
[118] N. Zhang, Y. Deng, Q. Tai, B. Cheng, L. Zhao, Q. Shen, R. He, L. Hong, W. Liu, S. Guo, K. Liu, H. R. Tseng, B. Xiong and X. Z. Zhao, “Electrospun TiO2 Nanofiber-Based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients”, Advanced Materials, 2012, 24, 2756 – 2760.
[119] A. L. Yarin, S. Koombhongse and D. H. Reneker, “Taylor Cone and Jetting from Liquid Droplets in Electrospinning of Nanofibers”, Journal of Applied Physics, 2001, 90, 4836 – 4846.
[120] A. Greiner, and J. H. Wendorff, “Electropinning: A Fascinating Method for the Preparation of Ultrathin Fibers”, Angewandte Chemie International Edition, 2007, 46, 5670 – 5703.
[121] S. H. Nam, H. S. Shim, Y. S. Kim, M. A. Dar, J. G. Kim and W. B. Kim, “Ag or Au Nanoparticle-Embedded One-Dimensional Composite TiO2 Nanofbers Prepared via Electrospinning for Use in Lithium-Ion Batteries”, Applied Materials and Interfaces, 2010, 2, 2046 – 2052.
[122] I. S. Chronakis, “Novel Nanocomposites and Nanoceramics Based on Polymer Nanofibers Using Electrospinning Process-A Review”, Journal of Materials Processing Technology, 2005, 167, 283 – 293.
[123] W. He, T. Young, W. E. Teo, Z. Ma and S. Ramakrishna, “Fabrication and Endothelialization of Collagen-Blended Biodegradable Polymer Nanofibers: Potential Vascular Graft for Blood Vessel Tissue Engineering”, Tissue Engineering, 2005, 11, 1574 – 1588.
[124] J. Zeng, A. Aigner, F. Czubayko, T. Kissel, J. H. Wendorff and A. Greiner, “Poly(vinyl alcohol) Nanofibers by Electrospinning as a Protein Delivery System and the Retardation of Enzyme Release by Additional Polymer Coatings”, Biomacromolecules, 2005, 6, 1484 – 1488.
[125] H. Guan, C. Shao, S. Wen, B. Chen J. Gong and X. Yang, “Preparation and Characterization of NiO Nanofibers via an Electrospinning Technique”, Inorganic Chemistry Communications, 2003, 6, 1302 – 1303.
[126] X. Yang, C. Shao, Y. Liu, R. Mu and H. Guan, “Nanofibers of CeO2 via an Electrospinning Technique”, Thin Solid Films, 2005, 478, 228 – 231.
[127] J. Huang and T. You, “Electrospun Nanofibers: From Rational Design, Fabrication Electrochemical Sensing Applications”.
[128] V. K. Mahajan, M. Misra, K. S. Raja and S. K. Mohapatra, “Self-Organized TiO2 Nanotublular Arrays for Photoelectro- Chemical Hydrogen Generation: Effect of Crystallization and Defect Structures”, Journal of Physics D: Applied Physics, 2008, 41, 125307.
[129] X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa and C. A. Grimes, “Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications”, Nano Letter, 2008, 8, 3781 – 3786.
[130] R. Cai, Y. Kubota, T. Shuin, H. Sakai, K. Hashimoto and A. Fujishima, “Induction of Cytotoxicity by Photoexcited TiO2 Particles”, Cancer Research, 1992, 52, 2346 – 2348.
[131] Y. Qin, L. Sun, X. Li, Q. Cao, H. Wang, X. Tang and L. Ye, “Highly Water-Dispersible TiO2 Nanoparticles for Doxorubicin Delivery: Effect of Loading Mode on Therapeutic Efficacy”, Journal of Materials Chemistry, 2011, 21, 18003 – 18010.
[132] T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, “Photodynamic Therapy”, Journal of the National Cancer Institute, 1998, 90, 889 – 905.
[133] M. Triesscheijn, P. Baas, J. H. M. Schellens and F. A. Stewart, “Photodynamic Therapy in Oncology”, The Oncologist, 2006, 11, 1034 – 1044.
[134] M. Gratzel, “Photoelectrochemical cells”, Nature, 2001, 414, 338 – 344.
[135] Q. Li, X. Wang, X. Lu, H. Tian, H. Jiang, G. Lv, D. Guo, C. Wu and B. Chen, “The Incorporation of Daunorubicin in Cancer Cells Through the Use of Titanium Dioxide Whiskers”, Biomaterials, 2009, 30, 4708 – 4715.
[136] Z. F. Yin, L. Wu, H. G. Yang and Y. H. Su, “Recent Progress in Biomedical Applications of Titanium Dioxide”, Physical Chemistry Chemical Physics, 2013, 15, 4844 – 4858.
[137] J. Li, T. Han, N. Wei, J. Du and X. Zhao, “Three-Dimensionally Ordered Macroporous (3DOM) Gold-Nanoparticle-Doped Titanium Dioxide (GTD) Photonic Crystals Modified Electrodes for Hydrogen Peroxide Biosensor”, Biosens Bioelectron, 2009, 25, 773.
[138] Y. T. Shi, R. Yuan, Y. Q. Chai, M. Y. Tang and X. L. He, “Amplification of Antigen-Antibody Interactions via Back-Filling of HRP on the Layer-by-Layer Self-Assembling of Thionine and Gold Nanoparticles Films on Titania Nanoparticles/Gold Nanoparticles-Coated Au Electrode”, Journal of Electroanalytical Chemistry, 2007, 604, 9 – 16.
[139] Q. Xie, Y. Zhao, X. Chen, H. Liu, D. G. Evans and W. Yang, “Nanosheet-Based Titania Miroshpheres with Hollow Core-Shell Structure Encapsulating Horseradish Peroxidase for a Mediator Free Biosensor”, Biomaterials, 2011, 32, 6588 – 6594.
[140] N. Zhang, Y. Deng, Q. Tai, B. Cheng, L. Zhao, Q. Shen, R. He, L. Hong, W. Lu, S. Guo, K. Liu, H. R. Tseng, B. Xiong and X. Z. Zhao, “Electrospun TiO2 Nanofiber-Based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients”, Advanced Materials, 2012, 24, 2756 – 2760.
[141] S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, S. A. Haber and M. Toner, “Isolation of Rare Circulating Tumor Cells in Cancer Patients by Microchip Technology”, Nature, 2007, 450, 1235 – 1239.
[142] M. Yu, S. Stott, M. Toner, S. Maheswaran and D. A. Haber, “Circulating Tumor Cells: Approaches to Isolation and Characterization”, The Journal of Cell Biology, 2011, 192, 373 – 382.
[143] R. He, L. Zhao, Y. Liu, N. Zhang, B. Cheng, Z. He, B. Cai, S. Li, W. Liu, S. Guo, Y. Chen, B. Xiong and X. Z. Zhao, “Biocompatible TiO2 Nanoparticle-Based Cell Immunoassay for Circulating Tumor Cells Capture and Identification from Cancer Patients”, Biomed Microdevices, 2013, 15, 617 – 626.
[144] H. Liu, X. Liu, J. Meng, P. Zhang, G. Yang, B. Su, Li, Chen, D. Han, S. Wang and L. Jiang, “Hydrophobic Interaction-Mediated Capture and Release of Cancer Cells on Thermoresponsive Nanostructured Surfaces”, Advanced Materials, 2013, 25, 922 – 927.
[145] S. Hou, H. Zhao, L. Zhao, Q. Shen, K. S. Wei, D. Y. Suh, A. Nakao, M. A. Garcia, M. Song, T. Lee, B. Xiong, S. C. Luo, H. R. Tseng and H. H. Yu, “Capture and Stimulated Release of Circulating Tumor Cells on Polymer-Grafted Silicon Nanostructures”, Advanced Materials, 2013, 25, 1547 – 1551.
[146] S. Wang, K. Liu, J. Liu, Z. T. F. Yu, X. Xu, L. Zhao, T. Lee, E. K. Lee, J. Reiss, Y. K. Lee, L. W. K. Chung, J. Huang, M. Rettig, D. Seligson, K. N. Duraiswamy, C. K. F. Shen and H. R. Tseng, “Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates with Integrated Chaotic Micromixers”, Angewandte Chemie International Edition, 2011, 50, 3084 – 3088.
[147] A. A. Adams, P. I. Okagbare, J. Feng, M. L. Hupert, D. Patterson, J. Gottert, R. L. McCarley, D. Nikitopoulos, M. Murphy and S. A. Soper, “Highly Efficient Circulating Tumor Cell Isolation from Whole Blood and Label-Free Enumeration Using Polymer-Based Microfluidics with an Integrated Conductivity Sensor”, Journal of the American Chemical Society, 2008, 130, 8633 – 8641.
[148] L. S. Lim, M. Hu, M. C. Huang, W. C. Cheong, A. T. L. Gan, X. L. Looi, S. M. Leong, E. S. C. Koay and M. H. Li, “Microsieve Lab-Chip Device for Rapid Enumeration and Fluorescence In Situ Hybridization of Circulating Tumor Cells”, Lab on a Chip, 2012, 12, 4388 – 4396.
[149] J. H. Kang, S. Krause, H. Tobin, A. Mannoto, M. Kanapathipillai and D. E. Ingber, “A Combined Micromagenetic-Microfluidic Device for Rapid Capture and Culture of Rare Circulating Tumor Cells”, Lab on a Chip, 2012, 12, 2175 – 2181.
[150] Y. K. Chung, J. Reboud, K. C. Lee, H. M. Lim, P. Y. Lim, K. Y. Wang, H. Ji and Y. Chen, “An Electrical Biosensor for the Detection of Circulating Tumor Cells”, Biosensors and Bioelectronics, 2011, 26, 2520 – 2526.
[151] C. A. Bichsel, S. Gobaa, S. Kobel, C. Secondini, G. N. Thalmann, M. G. Cecchini and M. P. Lutolf, “Diagnostic Microchip to Assay 3D Colony-Growth Potential of Captured Circulating Tumor Cells”, Lab on a Chip, 2012, 12, 2312 – 2136.
[152] W. I. We and J. S. T. Sham, “Nasopharyngeal Carcinoma”, The Lancet, 2005, 365, 2041 – 2054.
[153] M. C. Yu and J. M. Yuan, “Epidemiology of Nasopharungeal Carcinoma”, Seminars in Cancer Biology, 2002, 12, 421 – 429.
[154] S. H. Shin, O. Purevdorh, O. Castano, J. A. Planell and H. W. Kim, “A Short Review: Recent Advances in Electropsinning for Tissue Regeneration”, Journal of Tissue Engineering, 2012, 3, 2041731412443530.
[155] M. Y. Lan, C. L. Chen, K. T. Lin, S. A. Lee, W. L. Yang, C. N. Hsu, J. C. Wu, C. Y. Ho, J C. Li and C. Y. Huang, “From NPC Therapeutic Target Identification to Potential Treatment Strategy”, Molecular Cancer Therapeutics, 2010, 9, 2511 – 2523
[156] Q. Tao and A. T. C. Chan, “Nasopharyngeal Carcinoma: Molecular Pathogenesis and Therapeutic Developments”, Expert Reviews in Molecular Medicine, 2007, 9, 1 – 24.
[157] J. Chou, Y. C. Lin, J. Kim, L. You, Z. Xu, D. M. Jablons, “Nasopharyngeal Carcinoma-Review of the Molecular Mechanisms of Tumorigenesis”, Head and Neck, 2008, 30, 946 – 963.
[158] R. F. Yen, M. F. Yen, R. L. Hong, K. Y. Tzen, C. R. Chien and T. H. H. Chen, “The Cost-Utility Analysis of 18-Fluoro-2-Deoxyglucose Positron Emission Tomography in the Diagnosis of Recurrent Nasopharyngeal Carcinoma”, Academic radiology, 2009, 16, 54- 60.
[159] Y. Gan, A. Fones-Tan and S. Chan, “Molecular Diagnosis of Nasopharyngeal Carcinoma: A Review”, Anneals of the Academy of Medicine, Singapore, 1996, 25, 71 – 74.
[160] J. Y. Shao, Y. H. Li, H. Y. Gao, Q. L. Wu, N. J. Cui, L. Zhang, G. Cheng, L. F. Hu, I. Emberg and Y. X. Zeng, “Comparison of Plasma Epstein-Barr Virus (EBV) DNA Levels and Serum EBV Immunoglobulin A/Virus Capsid Antigen Antibody, Titers in Patients with Nasopharyngeal Carcinoma”, Cancer, 2004, 100, 1162 – 1170.
[161] W. Gao, J. Z. Li, W. K. Ho, J. Y. Chan and T. S. Wong, “Biomarkers for Use in Monitoring Responses of Nasopharyngeal Carcinoma Cells to Ionizing Radiation”, Sensor, 2012, 12, 8832 – 8846.
[162] G. P. Gupta and J. Massague, “Cancer Metastasis: Building a Framework”, Cell, 2006, 127, 679 – 695.
[163] M. Vendrell, K. K. Maiti, K. Dhaliwal and Y. T. Chang, “Surface-Enhanced Raman Scattering in Cancer Detection and Imaging”, Trend in Biotechnology, 2013, 31, 249 – 257.
[164] M. Yu, S. Stott, M. Toner, S. Maheswaran, D. A. Haber, “Circulating Tumor Cells: Approaches to Isolation and Characterization”, The Journal of Cell Biology, 2011, 192, 373 – 382.
[165] H. Esmaeilsabzali, T. V. Veischlag, M. E. Cox, A. M. Parameswaran and E. J. Park, “Detection and Isolation of Circulating Tumor Cells: Principles and Methods”, Biotechnology Advances, 2013, 31, 1063 – 1084.
[166] J. C. Lin, K. Y. Chen, W. Y. Wang, J. S. Jan and Y. H. Wei, “PCR Detection of Circulating Tumor Cells in Nasopharyngeal Carcinoma Patients with Distant Metastasis: Effect of Enzyme and Sampling”, Head and Neck, 2002, 24, 591 – 596.
[167] C. M. L. Chan, T. C. C. Au, A. T. C. Chan, B. B. Y. Ma, N. B. Y. Tsui, S. S. M. Ng, E. P. Hui, L. W. C. Chan, W. S. Ho and B. Y. M. Yung, “Advanced Technologies for Studying Circulating Tumor Cells at the Protein Level”, Expert review of proteomics, 2013, 10, 579 – 589.
[168] T. Tian, X. Xiao, R. Liu, R. Liu, H. She and X. Hu, “Study on Titania Nanotube Arrays Prepared by Titanium Anodization in NH4F/H2SO4 Solution” Journal of Materials Science, 2007, 42, 5539 – 5543.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2017-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明