博碩士論文 102389602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.145.166.7
姓名 潘卓督(Jagabandhu Patra)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 研發以二氧化錫為負極材料的鈉離子電池: 電解液、輔助性碳材料與黏著劑的優化
(Development of Tin Oxide Anode for Sodium-Ion Batteries: Optimization of Electrolytes, Carbon Supports, and Binders)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究
★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究
★ 高濃度電解質於鋰電池知應用研究★ 熱解法製備硬碳材料應用於鈉離子電池負極
★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響★ 離子液體電解質於鈉離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 鈉離子電池在後鋰電池時代的儲能裝置中極具競爭力,鈉在地殼中豐富的含量更使其適合應用於大型儲能設備。不過鈉離子電池的發展仍在初期階段。近期已有許具潛力的正極材料被提出,已獲得突破性的成果,並達到接近鋰離子電池的電容量。尋找適用的負極材料是極具挑戰性的,主要原因在於傳統的石墨(graphite)儲存鈉離子的能力相對不佳。
近期,擁有高穩定性、易取得、低毒性、高理論電容量(1398 mA h g?1)等性質的二氧化錫獲得研究人員高度重視。然而,二氧化錫作負極材料的鈉離子電池,仍有以下四大缺點代改善:(1)較低的首圈充放電庫倫效率、(2)未達預期的充放電電容量、(3)不佳的高速充放電電容維持率以及(4)不佳的循環穩定性。
本研究論文著眼於電解液、輔助型碳材料、黏著劑的最佳化,研發出有良好電化學表現的二氧化錫負極鈉離子電池。整體目標為克服二氧化錫負極遭遇的困境。
第一部分為系統性地研究電解液,應用於超臨界二氧化碳系統合成二氧化錫/石墨烯負極系統中。我們研究以NaClO4 為鈉鹽的propylene carbonate (PC)、PC/fluoroethylene carbonate (FEC)、PC/ethylene carbonate (EC) 與 PC/EC/FEC 電解液系統,藉以了解FEC和EC 對於二氧化錫/石墨烯負極的庫倫效率、可逆電容量、高速維持率與循環穩定性的影響。此外,上述的性質研究也應用於N-Propyl-N-methylpyrrolidinium (PMP)–FSI 的離子液體系統,不同溫度的影響(25 °C 與 60 °C)也納入研究範疇。此部分的研究結果顯示電解液的成分調和對於充放電性質有極大的影響。
第二部分研究注重輔助型碳材料的研發。二氧化錫奈米顆粒(直徑2 nm左右)被包覆於CMK-8碳材,其中CMK-8具有三維多向性的連結孔道。此系統可獲得傑出的可逆電容量(800 mAh g?1)、高速維持率(約10分鐘的放電時限達到 330 mAh g?1 的電容量)與循環穩定性(充放電300圈後維持80% 的電容量)。此外,SnO2-Sn 的嵌合轉化反應與Sn-Na合金化反應也獲得提升。此處提出的電極材料微結構形式,能大幅提升儲鈉性質,亦可作為其它正/負極電池材料的應用參考。
第三部分研究注重於最佳化SnO2/CMK-8系統的黏著劑條件。我們導入polyvinylidene difluoride (PVDF)、sodium carboxymethylcellulose (NaCMC)、sodium polyacrylate (NaPAA)、 與 NaCMC/NaPAA混和系統以提升鈉化/去鈉化的電化學性質。NaCMC與NaPAA之間的協和作用在電極生成有效的保護層,此保護層不僅能提升充放電庫倫效率,也有限制SnO2於CMK-8當中,避免金屬氧化物的聚集,進而影響循環維持率。在此混和系統中,20 mA g–1 與 2000 mA g–1 充放電速率下的電容量分別達到 850 mAh g–1 與 425 mAh g–1。更甚者,在300圈的循環充放電測試下,電容維持率仍高達90%。在電化學性質以外,黏著劑對於鈉離子電池熱失控的影響也透過示差掃描量熱儀分析。
摘要(英) Sodium-ion batteries (NIBs) are appealing as post-lithium energy storage devices, especially for large-scale energy storage applications owing to its abundance and global distribution. However, NIBs are still in the early stages of development. There have been many decent breakthroughs in developing stable and low-cost cathodes, with the performance being close to that of Lithium-ion batteries (LIB) cathodes. Finding a suitable anode is comparatively challenging since the commonly used LIBs graphite anode has poor Na+ storage capability. Recently, tin oxide (SnO2) has attracted much attention as the NIB anode because it is chemically stable, readily available, and environmentally benign, and has ability to deliver a very high theoretical specific capacity of 1398 mA h g?1. However, this anode currently encounters four major obstacles, which are low first-cycle coulombic efficiency, unsatisfactory charge–discharge capacities, poor high rate performance, and insufficient cyclic stability.
This thesis is focused on the development of high-performance SnO2 anode through optimization of electrolytes, carbon supports, and binders. The sole objective of the thesis is to overcome the limitations of SnO2 anode. The third chapter of the thesis deals with the systematic study to optimize the electrolyte formulation for a SnO2/graphene anode, which is prepared via a supercritical-CO2-assisted synthesis method. Herein, we study various electrolytes like propylene carbonate (PC), PC/fluoroethylene carbonate (FEC), PC/ethylene carbonate (EC), and PC/EC/FEC electrolytes (with NaClO4 salt) to clarify the effects of FEC and EC on the columbic efficiency, reversible capacity, rate capability, and cycle life of a SnO2/graphene. Moreover, the above properties are compared to those of an N-Propyl-N-methylpyrrolidinium (PMP)–FSI ionic liquid (IL) electrolyte. The temperature effects (25 and 60 °C) for both the carbonate-based and IL electrolytes are also examined. The results obtained point out the importance of the electrolyte formulation, which affects the charge–discharge performance of the electrode to a great extent.
The fourth chapter of the thesis deals with the development of unique carbon support for SnO2. Nanosized SnO2 particles (~2 nm in diameter) are embedded in ordered mesoporous CMK-8 carbon with three-dimensional interconnected pore channels. With the unique SnO2/CMK-8 architecture, exceptional reversible capacity (800 mA h g?1), rate capability (delivering 330 mA h g?1 in ~10 min.), and cyclic stability (80% retention after 300 cycles) is achieved. Also, the SnO2?Sn conversion reaction and Sn?Na alloying reaction were effectively promoted. The proposed microstructure/architecture of the electrode material is highly effective in boosting Na+ storage properties and should be applicable to other anodes and cathodes in various battery applications.
The fifth chapter deals with the optimization of binders for SnO2/CMK-8. Herein, we employed polyvinylidene difluoride (PVDF), sodium carboxymethylcellulose (NaCMC), sodium polyacrylate (NaPAA), and NaCMC/NaPAA mixed binders to enhance the electrode sodiation/desodiation properties. Synergistic effects between NaCMC and NaPAA lead to the formation of an effective protective film on the electrode. This coating layer not only increases the charge–discharge Coulombic efficiency, suppressing the accumulation of solid-electrolyte interphases, but also keeps the SnO2 nanoparticles in the CMK-8 matrix, preventing oxide agglomeration and falling off upon cycling. With NaCMC/NaPAA binder, exceptional electrode capacities of 850 and 425 mA h g–1 are obtained at charge–discharge rates of 20 and 2000 mA g–1, respectively. After 300 cycles, 90% capacity retention is achieved. The thermal reactivity of the sodiated electrodes is studied using differential scanning calorimetry. The binder effects on NIB safety, in terms of thermal runaway, are investigated.
關鍵字(中) ★ ?离子?池
★ ??极材料的
★ SnO2
★ 電解液
★ 輔助性碳材料
★ 與黏著
關鍵字(英) ★ ?Sodium-ion batterie
★ Anode
★ SnO2
★ Electrolytes
★ Carbon Support
★ Binders
論文目次 Table of Contents

Chapter 1

Introduction

1.1 Energy storage…………………………………………………………………….. 1
1.2 Lithium ion batteries………………………………………………………………. 2
1.3 Sodium-ion batteries………………………………………………………………. 4
1.4 Challenges in sodium-ion batteries……………………………………………….. 7
1.5 Cathodes for sodium-ion batteries………………………………………………... 9
1.6 Anodes for sodium-ion batteries………………………………………………….. 11
1.7 Electrolytes for sodium-ion batteries……………………………………………... 14
1.8 Additives for sodium-ion batteries………………………………………………... 17
1.9 Solid-electrolyte interphase in sodium-ion batteries……………………………… 18
1.10 Binders for sodium-ion batteries………………………………………………….. 19
1.11 Reference …………………………………………………………………………. 21

Chapter 2

Literature review and motivation

2.1 SnO2 as prospective anode materials for this research……………………………. 27
2.2 Literature survey for SnO2 as anode materials for sodium-ion batteries …............ 27
2.3 Research motivation………………………………………………………………. 41
2.4 Thesis outline …………………….……………………………………………….. 43
2.5 Reference………………………………………………………………………….. 44

Chapter 3

Electrochemical Na+ storage properties of SnO2/graphene anode in carbonate-based and ionic liquid electrolytes

3.1 Introduction…………………………………………..……………………………. 48
3.2 Experimental
3.2.1. Synthesis of SnO2/graphene composite………………………………….….51
3.2.2. Preparation of electrolytes………………………………………………….51
3.2.3. Cell assembly……………………………………………………………….52
3.2.4. Material and electrochemical characterizations …………………………… 52

3.3 Result and discussion………..……………………………………………………. 53
3.4 Conclusion …………………….……………………………………………….. 67
3.5 Reference………………………………………………………………………….. 68


Chapter 4

Three-dimensional interpenetrating mesoporous carbon confining SnO2 particles for superior sodiation/desodiation properties

4.1 Introduction…………………………………………..……………………………. 73
4.2 Experimental
4.2.1. Synthesis of SnO2/CMK-8 nanocomposite powder……………..……….….76
4.2.2. Cell assembly………………………………………………….…………….77
4.2.3. Material and electrochemical characterizations …………………………… 77

4.3 Result and discussion………..……………………………………………………. 78
4.4 Conclusion …………………….…………………………………...…………….. 96
4.5 Reference………………………………………………………………………….. 97
4.6 Supplementary Information……………………………………………………….. 102


Chapter 5

Polymeric binders for exceptional sodiation/desodiation properties and improved safety of SnO2@CMK-8 anodes

5.1 Introduction…………………………………………..……………………………. 104
5.2 Experimental
5.2.1. Synthesis of SnO2@CMK-8 nanocomposite powder and cell assembly….107
5.2.2. Material and electrochemical characterizations …………………………… 108


5.3 Result and discussion………..……………………………………………………. 109
5.4 Conclusion …………………….…………………………………………………. 129
5.5 Supplementary figure……………………………………………………………… 130
5.6 References…………………………………………………………………………. 133

Chapter 6

General conclusions and future work

6.1 General conclusion…………………………………..……………………………. 138
6.2 Future work.………………………………………………………………………. 140
6.3 Reference………………………………………………………………………….. 141

APPENDIX A ………………………………………………………………. 142
Copy right permission to use in chapter 3, 4 and 5…..…………………………..
142
參考文獻 Reference

Chapter 1

1. J. B. Goodenough and K. S. Park, J. Am. Chem. Soc., 2013, 135, 1167. 2. M. M. Thackeray, C. Wolverton and E. D. Isaacs, Energy Environ. Sci., 2012,5, 7854. 3. H. Kim, J. Hong, K. Y. Park, H. Kim, S. W. Kim and K. Kang, Chem. Rev., 2014, 114 (23), 11788. 4. J. B. Goodenough and Y. Kim, Chem. Mater., 2010, 22, 587. 5. M. S. Whittingham, Chem. Rev. 2014, 114, 11414. 6. N. Nitta. F. Wu, J. T. Lee and G. Yushin, Mater. Today., 2015, 18, 252.
7. J. Chen, Material, 2013, 6,156.
8. V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 2011, 4, 3243.
9. V. Palamores, P. Serras, I. Villaluenge, K. B. Hueso, J. C. Gonzalez and T. Rojo, Energy Environ. Sci., 2012, 5, 5884.
10. B. L. Ellis and L. Nazar, Curr. Opin. Solid State Mater. Sci., 2012, 16,168.
11. H. Pan, Y. S. Hu and L. Chen, Energy Environ. Sci., 2013, 6, 2338.
12. K. B. Hueso, M. Armand and T. Rojo, Energy Environ. Sci., 2013, 6, 734.
13. N. Yabuchi, K. Kubota, M. Dahbi and S. Komaba, Chem. Rev., 2014, 114, 11636.
14. D. Kundu, E. Talaie, V. Duffort and L. F. Nazar, Angew. Chem. Int. Ed., 2015, 54, 3431.
15. L. P. Wang, L. Yu, X. Wang, M. Srinivasan and Z. J. Xu, J. Mater. Chem. A, 2015, 3, 9353.
16. H. Kim, H. Kim, Z. Ding, M. H. Lee, K. Lim, G. Yoon and K. Kang, Adv. Energy Mater., 2016, 6, 1600943.
17. S. W. Kim, D. H. Seo, X. Ma, G. Ceder and K. Kang, Adv. Energy Mater., 2012, 2, 710.
18. W. Qi, J. G. Shapter, Q. Wu, T. Yin, G. Gao and D. Cui, J. Mater. Chem. A, 2017, 5, 19521.
19. A. Kraytsberg and Y. E. Eli, Adv. Energy Mater., 2012, 2, 922.
20. J. Wang and X. Sun, Energy Environ. Sci., 2015, 8, 1110.
21. B. Kang and G. Ceder, Nature, 2009, 458, 190.
22. B. Scrosati and J. Garche. J. Power Sources, 2010, 195, 2419.
23. L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, J. Power Sources, 2013, 226, 272.
24. M. H. Han, E. Gonzalo, G. Singh and T. Rojo, Energy Environ. Sci., 2015, 8, 81.
25. J. W. Choi and D. Aurbach, Nat. Rev. Mater., 2016,1, 16013.
26. M. Dahbi, N. Yabuchi, K. Kubota, K. Tokiwa and S. Komaba, Phys.Chem.Chem.Phys., 2014, 16, 15007.
27. H. Hou, X. Qiu, W. Wei, Y. Zhang and X. Ji, Adv. Energy Mater. 2017, 7, 1602898.
28. Q. Bai, L. Yang, H. Chen and Y. Mo, Adv. Energy Mater. 2018, 8,1702998.
29. M. D. Slater, D. Kim, E. Lee and C. S. Johnson, Adv. Funct. Mater., 2013, 23, 947
30. W. Wang, W. Li, S. Wang, Z. Miao, H. K. Liu and S. Chou, J. Mater. Chem. A, 2018, 6, 6183.
31. M. S. Balogun, Y. Luo, W. Qie. P. Li and Y. Tong, Carbon, 2016, 981, 162.
32. C. Fang, Y. Huang, W. Zhang, J. Han, Z. Deng, Y. Cao and H. Yang, Adv. Energy Mater., 2015, 6, 1501727.
33. P. K. Nayak, L. Yang, W. Brehm and P. Adelheim, Angew. Chem., 2018, 57, 102.
34. G. L. Xu, R. Amine, A. Abouimrane, H. Che, M, Dahbi, Z. F. Ma, I. Saadoune, J. Alami, W. L. Mattis, F. Pan, Z. Chen and K. Amine, Adv. Energy Mater., 2018, 8, 1702403.
35. H. Zhang, I. Hasa and S. Passerini, Adv. Energy Mater., 2018, 8, 1702582.
36. K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura and S. Komaba, Chem. Rec., 2018, 18, 1.
37. J. Kim, H. Kim and K. Kang, Adv. Energy Mater., 2018, 8, 1702646.
38. Z. Dai, U. Mani, H. T. Tan and Q. Yan, Small Methods, 2017, 1, 1700098.
39. S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier and Y. Yu, Adv. Mater., 2017, 29, 1700431.
40. Y. You and A. Manthiram, Adv. Energy Mater., 2017, 8, 1701785.
41. W. J. Li, C. Han, W. Wang, F. Gebert, S. L. Chou, H. K. Liu, X. Zhang and S. X. Dou, Adv. Energy Mater., 2017, 7, 1700274.
42. Y. Kim, K. H. Ha, S. M. Oh and K. T. Lee, Chem. Eur. J., 2014, 20, 11980.
43. W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji and L. Hu, Acc. Chem. Res., 2016, 49, 231.
44. H. Hou, X. Qiu, W. Wei, Y. Zhang and X. Ji, Adv. Energy Mater., 2017, 7, 1602898.
45. J. Cui, S. Yao and J. K. Kim, Energy Storage Mater., 2017, 7, 64.
46. A. Ponrouch, E. Marchante, M. Courty, J. M. Taracson and M. R. Polacin, Energy Environ. Sci., 2012, 5, 8572.
47. A. Ponrouch, R. Dedryvere, D. Monti, A. E. Demet, J. M. A. Mba, L. Croguennec, C. Masquelier, P. Johansson and M. R. Polacin, Energy Environ. Sci., 2013, 6, 2361.
48. A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson and M. R. Polacin, J. Mater. Chem. A, 2015, 3, 22.
49. G. G. Eshetu, S. Grugeon, H. Kim, S. Jeong, L. Wu, G. Gachot, S. Laruelle, M. Armand and S. Passerini, ChemSusChem, 2016, 9, 462. 50. H. Che, S. Chen, Y. Xie, H. Wang, K. Amine, X. Z. Liao and Z. F. Ma, Energy Environ. Sci., 2017, 10, 1075. 51. M. Lao, Y. Zhang, W. Luo, Q. Yan, W. Sun and S. X. Dou, Adv. Mater., 2017, 29, 1700622.
52. M. Wang, F. Zhang, C. S. Lee and Y. Tang, Adv. Energy Mater., 2017, 7, 1700536.
53. M. I. Jamesh, A. S. Prakash, J. Power Sources, 2018, 378, 268. 54. J. Y. Hwang, S. T. Myung and Y. K. Sun, Chem. Soc. Rev., 2017,46, 3529.
55. L. Yu, L. P. Wang, H. Liao, J. Wang, Z. Feng, O. Lev, J. S. C. Loo, M. T. Sougrati and Z. J. Xu, Small, 2018, 14, 1703338.
56. P. Ge, M. Fouletier, Solid State Ion., 1988, 28-30, 1172–1175.
57. M. Hu, Y. Jiang, W. Sun, H. Wang, C. Jin and M. Yan, ACS Appl. Mater. Interface, 2014, 6, 19449.
58. Q. Wang, C. Zhao, Y. Lu, Y. Li, Y. Zheng, Y. Qi, X. Rong, L. Jiang, X. Qi, Y. Shao, D. Pan, B. Li, Y. S. Hu and L. Chen, Small, 2017, 13, 1701835.
59. Z. Zhu and J. Chen, J. Electrochem. Soc., 2015, 162, A2393.
60. R. Alcantara, J. M. J. Mateos, J. L. Tirado, J. Electrochem. Soc., 2002, 149, A201–A205.
61. S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Adv. Funct. Mater., 2011, 21, 3859.
62. R. Alcantara, P. Lavela, G.F. Ortiz, J.L. Tirado, Electrochem. Solid-State Lett., 2005, 8, A222. 63. L. Xia, L. Yu, D. Hu and G. Z. Chen, Mater. Chem. Front., 2017,1, 584.
64. D. R. MacFarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D. Elliott, J. H. Davis, M. Watanabe, P. Simon and C. A. Angell, Energy Environ. Sci., 2014, 7, 232. 65. M. V. Fedrov and A. A. Kornyshev, Chem. Rev., 2014, 114, 2978.
66. M. Watanabe, M. L. Thomas, S. Zhang, K. Ueno, T. Yasuda and K. Dokko, Chem. Rev., 2017, 117, 7190.
67. I. Hasa, S. Passerini and J. Hassoun, J. Power Sources, 2016, 303, 203.
68. G. A. Giffin, J. Mater. Chem. A, 2016, 4, 13378.
69. T. Nohira, T. Ishibashi and R. Hagiwara, J. Power Sources, 2012, 205, 506.
70. A. Fukunaga, T. Nohira, Y. Kozawa, R. Hagiwara, S. Sakai, K. Nitta, S. Inazawa, J. Power Sources, 2012, 209, 52.
71. D. Monti, E. Jonsson, M. R. Palacin and P. Johansson, J. Power Sources, 2014, 245, 630.
72. D. Monti, A. Ponrouch, M. R. Palacin and P. Johansson, J. Power Sources, 2016, 324, 712.
73. C. Ding, T. Nohira, K. Kuroda, R. Hagiwara, A. Fukunaga, S. Sakai, K. Nitta, S. Inazawa, J. Power Sources, 2013, 238, 296.
74. N. Wongittharom, T. C. Lee, C. H. Wang, Y. C. Wang, J. K. Chang, J. Mater. Chem. A, 2014, 2, 5655.
75. S. A. M. Noor, P. C. Howlett, D. R. MacFarlane, M. Forsyth, Electrochim. Acta, 2013, 114, 766.
76. A. Fukunaga, T. Nohira, R. Hagiwara, K. Numata, E. Itani, S. Sakai, K. Nitta, S. Inazawa, J. Power Sources, 2014, 246, 387.
77. C. Ding, T. Nohira and R. Hagiwara, J. Mater. Chem. A, 2015, 3, 20767.
78. C. Ding, T. Nohira and R. Hagiwara, J. Power Sources, 2017, 354, 10.
79. M. Shimizu, H. Usui, K. Yamane, T. Sakata, T. Nokami, T. Itoh and H. Sakaguchi, Int. J. Electrochem. Sci., 2015, 10, 10132.
80. C. Bommier and X. Ji, Small, 2018, 14, 1703576.
81. D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, Electrochim. Acta, 2002, 47, 1423.
82. S. Komaba, T. Ishikawa, N. Yabuchi, W. Murata, A. Ito, Y. Ohsawa, ACS Appl. Mater. Interface, 2011, 3, 4165.
83. N. Takenaka, H. Sakai, Y. Suzuki, P. Uppula, M. Nagaoka, J. Phys. Chem. C, 2015, 119, 18046.
84. U. Purushotham, N. Takenaka, M. Nagaoka, RSC Adv., 2016, 6, 65232. 85. A. Ponrouch, A. R. Goni and M. R. Palacin, Electrochem. Commun., 2013, 27, 85.
86. F. A. Soto, P. Yan, M. H. Engelhard, A. Marzouk, C. Wang, G. Xu, Z. Chen, K. Amine, J. Liu, V. L. Sprenkle, F. E. Mellouhi, P. B. Balbuena and X. Li, Adv. Mater., 2017, 29, 1606860. 87. L. Suo, D. Oh, Y. Lin, Z. Zhuo, O. Borodin, T. Gao, F. Wang, A. Kushima, Z. Wang, H. C. Kim, Y. Qi, W. Yang, F. Pan, J. Li, K. Xu and C. Wang, J. Am. Chem. Soc., 2017, 139, 18670. 88. R. Mogensen, D. Brandell and R. Younesi, ACS Energy Lett., 2016, 1, 1173. 89. J. Zhang, D. W. Wang, W. Lv, S. Zhang, Q. Liang, D. Zheng, F. Kang and Q. H. Yang, Energy Environ. Sci., 2017, 10, 370.
90. S. L. Chou, Y. Pan, J. Z. Wang, H. K. Liu and S. X. Dou, Phys. Chem. Chem. Phys., 2014, 16, 20347.
91. J. T. Li, Z. Y. Wu, Y. Q. Lu, Y. Zhou, Q. S. Huang, L. Huang, and S. G. Sun, Adv. Energy Mater., 2017, 7, 1701185. 92. W. Zhang, M. Dahbi and S. Komoba, Curr Opin Chem Eng., 2016, 13, 36.
93. S. Huang, J. Ren, R. Liu, M. Yue, Y. Huang and G. Yuan, Int J Energy Res., 2017, 42, 919.
94. Y. Shi, X. Zhou and G. Yu, Acc. Chem. Res., 2017, 50, 2642.
95. D. Mazouzi, Z. Karkar, C. R. Hernandez, P. J. Manero, D. Guyomard, L. Roue and B. Lestriez, J. Power Sources, 2015, 280, 553.
96. S. Komaba, K. Okushi, T. Ozeki, H. Yui, Y. Katayama, T. Miura, T. Saito, H. Groult, Electrochem. Solid State Lett., 2009, 12, A107.

Chapter 2

1. W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji and L. Hu, Acc. Chem. Res., 2016, 49, 231.
2. Y. Cao, L. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L. V. Saraf, Z. Yang and J. Liu, Nano Lett., 2012, 12, 3783.
3. Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings and C. Wang, Nat. Commun., 2014, 5, 4033.
4. Z. Li, J. Ding and D. Mitlin, Acc. Chem. Res., 2015, 48, 1657.
5. B. Huang, Z. Pan, X. Su and L. An, J. Power Sources, 2018, 395, 41.
6. D. Su, H. J. Ahn and G. Wang, Chem. Commun., 2013, 49, 3131.
7. Y. Wang, D. Su, C. Wang and G. Wang, Electrochem. Commun. 2013, 29,8.
8. D. Su, C. Wang, H. Ahn and G. Wang, Phys.Chem. Chem.Phys, 2013,15, 12543.
9. Y. X. Wang, Y. G. Lim, M. S. Park, S. L. Chou, J. H. Kim, H. K. Liu, S. X. Dou and Y. J. Kim, J. Mater. Chem. A, 2014, 2, 529.
10. M. Gu, A. Kushima, Y. Shao, J. G. Zhang, J. Liu, N. D. Browning, J. Li and C. Wang, Nano Lett., 2013, 13, 5203.
11. R. S. Kalubarme, J. Y. Lee and C. J. Park, ACS Appl. Mater. Interfaces, 2015, 7, 17226.
12. M. Dirican, Y. Lu, Y. Ge, O. Yildiz and X. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 18387.
13. Y. Zhao, C. Wei, S. Sun, L. P. Wang and Z. J. Xu, Adv. Sci., 2015, 2, 1500097.
14. J. Yue, W. Wang, N. Wang, X. Yang, J. Feng, J. Yang and Y. Qian, J. Mater. Chem. A, 2015, 3, 23194.
15. J. Ding, Z. Li, H. Wang, K. Cui, A. Kohandehghan, X. Tan, D. Karpuzov and D. Mitlin, J. Mater. Chem. A, 2015, 3, 7100.
16. Y. C. Lu, C. Ma, J. Alvarado, T. Kidera, N. Dimov, Y. S. Meng, and S. Okada, J. Power Sources, 2015, 284, 287.
17. Y. Cheng, J. Huang, J. Li, Z. Xu, Z. Xu, L. Cao, H. Ouyang, J. Yan and H. Qi, J. Alloys Compd., 2016, 658, 234.
18. L. Fan, X. Li, B. Yan, J. Feng, D. Xiong, D. Li, L. Gu, Y. Wen, S. Lawes and X. Sun, Adv. Energy Mater., 2016, 6, 1502057.
19. J. Cui, Z. L. Xu, S. Yao, J. Huang, J. Q. Huang, S. Abouali, M. A. Garakani, X. Ning and J. K. Kim, J. Mater. Chem. A, 2016, 4, 10964.
20. J. Patra, H. C. Chen, C. H. Yang, C. T. Hseih, C. Y. Su and J. K. Chang, Nano Energy, 2016, 28, 124.
21. J. Qin, N. Zhao, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li and C. He, J. Mater. Chem. A, 2017, 5, 10964.
22. X. Ao, J. Jiang, Y. Ruan, Z. Li, Y. Zhang, J. Sun and C. Wang, J. Power Sources, 2017, 359, 340.
23. Y. Xu, M. Zhou, C. Zhang, C. Wang, L. Liang, Y. Fang, M. Wu, L. Cheng and Y. Lei, Nano Energy, 2017, 38, 304.
24. Y. Zhang, J. Meng, X. Wang, X. Liu, X. Xu, Z. Liu, K. A. Owusu, C. Huang, Q. Li and L. Mai, Chem. Commun., 2018, 54, 1469.
25. Y. Wei, Z. Wang, H. Ye, J. Mou, D. Lei, Y. Liu, W. Lv, B. Li, F. Kang and Y. B. He, ChemistrySelect, 2017, 2, 11365.
26. X. Li, X. Sun, Z. Gao, X. Hu, R. Ling, S. Cai, C. Zheng and W. Hu, Nanoscale, 2018, 10, 2301.
27. N. Yabuuchi, K. Kubota, M. Dahbi and S. Komoba, Chem. Rev., 2014, 114, 11636.
28. H. Hou, X. Qui, W. Wei, Y. Zhang and X. Ji, Adv. Energy Mater, 2017, 1602898.
29. J. Patra, H. T. Huang, W. Xue, C. Wang, A. S. Helal, J. Li and J. K. Chang, Energy Storage Mat., 2019, 16, 146. 30. J. Mao, X. Fan, C. Luo and C. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 7147. 31. J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima and J. Li, Science, 2010, 330, 1515. 32. Y. Cheng, J. Huang, J. Li, Z. Xu, L. Cao, H. Ouyang, J. Yan and H. Qi, J. Alloys Compd., 2016, 658, 234. 33. J. Cui, Z. L. Xu, S. Yao, J. Huang, J. Q. Huang, S. Abouali, M. A. Garakani, X. Ning and J. K. Kim, J. Mater. Chem. A, 2016, 4, 10964. 34. Y. X. Wang, Y. G. Lim, M. S. Park, S. L. Chou, J. H. Kim, H. K. Liu, S. X. Dou and Y. J. Kim, J. Mater. Chem. A, 2014, 2, 529.
35. A. Ponrouch, E. Marchante, M. Courty, J. M. Tarascon and M. R. Palac?n, Energy Environ. Sci., 2012, 5, 8572.
36. A. Ponrouch, R. Dedryvere, D. Monti, A. E. Demet, J. M. A. Mba, L. Croguennec, C. Masquelier, P. Johansson and M. R. Palac?n, Environ. Sci., 2013, 6, 2361.
37. G. G. Eshetu, S. Grugeon, H. Kim, S. Jeong, L. Wu, G. Gachot, S. Laruelle, M. Armand, and S. Passerini, ChemSusChem, 2015, 9, 462. 38. Y. Zhang, J. Xie, S. Zhang, P. Zhu, G. Cao and X. Zhao, Electrochim. Acta, 2015, 151, 8.
39. J. Zhao, X. Yang, Y. Yao, Y. Sui, B. Zou, H. Ehrenberg, G. Chen and F. Du, Adv. Sci., 2018, 1700768.
40. M. J. P. Munoz, E. C. Martinez, J. L. Gomez and T. Rojo, Electrochem Acta 2016, 200, 123.
41. Y. Yui, M. Hayashi, K. Hayashi and J. Nakamura, Solid. State Ion., 2016, 288, 219.
42. V. D. Asta, D. Buchholz, L. G. Chagas, X. Dou, C. Ferrara, E. Quartarone, C. Tealdi, and S. Passerini, ACS Appl. Mater. Interfaces, 2017, 9, 34891.
43. W. Zhang, M. Dahbi and S. Komaba, Curr. Opin Chem Eng, 2016, 13, 36.

Chapter 3

1. J. W. Choi and D. Aurbach, Nat. Rev. Mater., 2016, 1, 16013.
2. D. Kundu, E. Talaie, V. Duffort and L. F. Nazar, Angew. Chem. Int. Ed., 2015, 54, 3431.
3. N. Yabuuchi, K. Kubota, M. Dahbi and S. Komaba, Chem. Rev., 2014, 114, 11636. 4. H. Kim, H. Kim, Z. Ding, M. H. Lee, K. Lim, G. Yoon and K. Kang, Adv. Energy Mater., 2016, 6, 1600943. 5. H. Hou, X. Qiu, W. Wei, Y. Zhang and X. Ji, Adv. Energy Mater., 2017, 7, 1602989.
6. C. H. Wang, Y. W. Yeh, N. Wongittharom, Y. C. Wang, C. J. Tseng, S. W. Lee, W. S. Chang and J. K. Chang, J. Power Sources, 2015, 274, 1016.
7. H. Y. Li, C. H. Yang, C. M. Tseng, S. W. Lee, C. C. Yang, T. Y. Wu, J. K. Chang, J. Power Sources, 2015, 285, 418.
8. X. F Luo, C. H. Yang and J. K. Chang, J. Mater. Chem. A, 2015, 3, 17282.
9. X. F. Luo, S. Y. Wang, C. M. Tseng, S. W. Lee, W. H. Chiang and J. K. Chang, J. Mater. Chem. A, 2016, 4, 7624.
10. P. C. Rath, J. Patra, D. Saikia, M. Mishra, J. K. Chang and H. M. Kao, J. Mater. Chem. A, 2016, 4, 14222.
11. A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson and M. R. Palacin. J. Mater. Chem. A, 2015, 3, 22.
12. A. Ponrouch, E. Marchante, M. Courty, J. M. Tarascon and M. R. Palac?n, Energy Environ. Sci., 2012, 5, 8572.
13. A. Ponrouch, R. Dedryvere, D. Monti, A. E. Demet, J. M. A. Mba, L. Croguennec, C. Masquelier, P. Johansson and M. R. Palacin, Energy Environ. Sci., 2013, 6, 2361.
14. G. G. Eshetu, S Grugeon, H. Kim, S. Jeong, L Wu, G. Gachot, S. Laruelle, M. Armand and S. Passerini, ChemSusChem, 2016, 9, 462.
15. S. Komaba, T. Ishikawa, N. Yabuuchi, W. Murata, A. Ito and Y. Ohsawa, ACS Appl. Mater. Interfaces, 2011, 3, 4165.
16. Y. Lee, J. Lee, H. Kim, K Kang and N. S. Choi, J. Power Sources, 2016, 320, 49. 17. L. Xia, L. Yu, D. Hu and G. Z. Chen, Mater. Chem. Front., 2017,1, 584. 18. R. Alcantara, P. Lavela, G. F. Ortiz, and J. L. Tirado, Electrochem. Solid-State Lett., 2005, 8(4), A222.
19. S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh and K. Fujiwara, Adv. Funct. Mater., 2011, 21, 3859.
20. M. Dahbi, T. Nakano, N. Yabuuchi, S. Fujimura, K. Chihara, K. Kubota, J. Y. Son, Y. T. Cui, H. Oji and S. Komaba, ChemElectroChem, 2016, 3, 1856.
21. A. Ponrouch, A.R. Goni, M. R. Palacin, Electrochem. Commun., 2013, 27, 85.
22. Z. Li, J. Ding and D. Mitlin, Acc. Chem. Res., 2015, 48, 1657.
23. D. R. MacFarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D. Elliott, J. H. Davis, Jr., M. Watanabe, P. Simon and C. A. Angell, Energy Environ. Sci., 2014, 7, 232. 24. M. Watanabe, M. L. Thomas, S. Zhang, K. Ueno, T. Yasuda and K. Dokko, Chem. Rev., 2017, 117, 7190.
25. C. H. Wang, C. H. Yang and J. K. Chang, Chem. Commun., 2016, 52, 10890.
26. T. Nohira, T. Ishibashi and R. Hagiwara, J. Power Sources, 2012, 205, 506.
27. A. Fukunaga, T. Nohira, Y. Kozawa, R. Hagiwara, S. Sakai, K. Nitta, S. Inazawa, J. Power Sources, 2012, 209, 52.
28. D. Monti, E. Jonsson, M. R. Palacin and P. Johansson, J. Power Sources, 2014, 245, 630.
29. D. Monti, A. Ponrouch, M. R. Palacin and P. Johansson, J. Power Sources, 2016, 324, 712.
30. N. Wongittharom, T. C. Lee, C. H. Wang, Y. C. Wang and J. K. Chang, J. Mater. Chem. A, 2014, 2, 5655. 31. S. A. M. Noor, P. C. Howlett, D. R. MacFarlane and M. Forsyth, Electrochim. Acta., 2013, 114, 766.
32. C. Ding, T. Nohira, K. Kuroda, R. Hagiwara, A. Fukunaga, S. Sakai, K. Nitta and S. Inazawa, J. Power Sources, 2013, 238, 296.
33. A. Fukunaga, T. Nohira, R. Hagiwara, K. Numata, E.Itani, S. Sakai, K. Nitta and S. Inazawa, J. Power Sources, 2014, 246, 387.
34. C. Ding, T. Nohira and R. Hagiwara, J. Mater. Chem. A, 2015, 3, 20767.
35. I. Hasa, S. Passerini and J. Hassoun, J. Power Sources, 2016, 303, 203.
36. M. Shimizu, H. Usui, K. Yamane, T. Sakata, T. Nokami, T. Itoh and H. Sakaguchi, Int. J. Electrochem. Sci., 2015,10, 10132.
37. L. Staudenmaier, Verfahren zur darstellung der graphitsaure, Ber. Dtsch. Chem. Ges., 1898, 31, 1481.
38. J. W. Wu, C. H. Wang, Y. C. Wang and J. K. Chang, Biosens. Bioelectron., 2013, 46, 30.
39. C. H. Wu, C. H. Wang, M. T. Lee and J. K. Chang, J. Mater. Chem., 2012, 22, 21466.
40. J. Patra, H. C. Chen, C. H. Yang, C. T. Hsieh, C. Y. Su, J. K. Chang, Nano Energy, 2016, 28, 124.
41. D. R. MacFarlane, P. Meakin, J. Sun, N. Amini, and M. Forsyth, J. Phys. Chem. B, 1999, 103, 4164.
42. D. H. Jiang, C. H. Yang, C. M. Tseng, S. L. Lee and J. K. Chang, Nanoscale, 2014, 6, 12565.
43. M. T. Lee, C. Y. Fan, Y. C. Wang, H. Y. Li, J. K. Chang and C. M. Tseng, J. Mater. Chem. A, 2013, 1, 3395.
44. Y. Zhao, L. P. Wang, M. T. Sougrati, Z. Feng, Y. Leconte, A. Fisher, M. Srinivasan and Z. Xu, Adv. Energy Mater., 2017, DOI: 10.1002/aenm.201601424.
45. M. Arakawa and J. I. Yamaki, J. Electroanal. Chem., 1987, 219, 273.
46. K. Tang, L. Fu, R. J. White, L. Yu, M. M. Titirici, M. Antonietti and J. Maier, Adv. Energy Mater., 2012, 2, 873.
47. K. Xu, Chem. Rev., 2014, 114, 11503. 48. P. C. Howlett, N. Brack, A. F. Hollenkamp, M. Forsyth and D. R. MacFarlane, J. Electrochem. Soc., 2006, 153(3), A595.
49. C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan and Y. Huang, Nat. Commun., 2015, 6, 6929.
50. J. Ni, S. Fu, C. Wu, Y. Zhao, J. Maier, Y. Yu and L. Li, Adv. Energy Mater., 2016, 6, 1502568.
51. D. Su, C. Wang, H. Ahn and G. Wang, Phys. Chem. Chem. Phys., 2013, 15, 12543.
52. J. W. Wang, X. H. Liu, S. X. Mao and J. Y. Huang, Nano Lett., 2012, 12, 5897.
53. V. L. Chevrier and G. Ceder, J. Electrochem. Soc., 2011, 158(9), A1011.
54. J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E. M. Lotfabad, B. C. Olsen and D. Mitlin, ACS Nano, 2013, 7, 11004. 55. A. Darwiche, L. Bodenes, L. Madec, L. Monconduit, H. Martinez, Electrochim. Acta, 2016, 207, 284.
56. L. O. Vogt, M. E. Kazzi, E. J. Berg, S. P. Villar, P. Novak and C. Villevieille, Chem. Mater., 2015, 27, 1210.
57. V. A. Agubra and J. W. Fergus, J. Power Sources, 2014, 268, 153. 58. P. Verma, P. Maire and P. Novak, Electrochim. Acta.,2010, 55, 6332.

Chapter 4

1. B. Dunn, H. Kamath and J. M. Tarascon, Science, 2011, 334, 928.
2. N. Yabuuchi, K. Kubota, M. Dahbi and S. Komaba, Chem. Rev., 2014, 114, 11636.
3. D. Kundu, E. Talaie, V. Duffort and L. F. Nazar, Angew. Chem. Int. Ed., 2015, 54, 3431. 4. H. Kim, H. Kim, Z. Ding, M. H. Lee, K. Lim, G. Yoon and K. Kang, Adv. Energy Mater., 2016, 6, 1600943.
5. J. W. Choi and D. Aurbach, Nat. Rev. Mater., 2016, 1, 16013.
6. C. Fang, Y. Huang, W. Zhang, J. Han, Z. Deng, Y. Cao and H. Yang, Adv. Energy Mater., 2015, 6, 1501727. 7. F. Wang, X. Wu, C. Li, Y. Zhu, L. Fu, Y. Wu and X. Liu, Energy Environ. Sci., 2016, 9, 3570.
8. N. Wongittharom, T. C. Lee, C. H. Wang, Y. C. Wang and J. K. Chang, J. Mater. Chem. A, 2014, 2, 5655.
9. C. H. Wang, Y. W. Yeh, N. Wongittharom, Y. C. Wang, C. J. Tseng, S. W. Lee, W. S. Chang and J. K. Chang, J. Power Sources, 2015, 274, 1016. 10. P. Ge and M. Fouletier, Solid State Ionics, 1988, 28–30, 1172.
11. B. Jache and P. Adelhelm, Angew. Chem. Int. Ed., 2014, 53, 10169.
12. K. Nobuhara, H. Nakayama, M. Nose, S. Nakanishi and H. Iba, J. Power Sources, 2013, 243, 585.
13. W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji and L. Hu, Acc. Chem. Res., 2016, 49, 231. 14. Y. Cao, L. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L. V. Saraf, Z. Yang and J. Liu, Nano Lett., 2012, 12, 3783.
15. Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings and C. Wang, Nat. Commun., 2014, 5, 4033 16. M. Gu, A. Kushima, Y. Shao, J. G. Zhang, J. Liu, N. D. Browning, J. Li and C. Wang, Nano Lett., 2013, 13, 5203.
17. J. Mao, X. Fan, C. Luo and C. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 7147.
18. J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima and J. Li, Science, 2010, 330, 1515.
19. Y. Cheng, J. Huang, J. Li, Z. Xu, L. Cao, H. Ouyang, J. Yan and H. Qi, J. Alloys Compd., 2016, 658, 234.
20. M. Dirican, Y. Lu, Y. Ge, O. Yildiz and X. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 18387.
21. Y. Wang, D. Su, C. Wang and G. Wang, Electrochem. Commun., 2013, 29, 8.
22. J. Cui, Z. L. Xu, S. Yao, J. Huang, J. Q. Huang, S. Abouali, M. A. Garakani, X. Ning and J. K. Kim, J. Mater. Chem. A, 2016, 4, 10964.
23. Y. X. Wang, Y. G. Lim, M. S. Park, S. L. Chou, J. H. Kim, H. K. Liu, S. X. Dou and Y. J. Kim, J. Mater. Chem. A, 2014, 2, 529.
24. J. Patra, H. C. Chen, C. H. Yang, C. T. Hsieh, C. Y. Su and J. K. Chang, Nano Energy, 2016, 28, 124.
25. Y Zhang, J. Xie, S. Zhang, P. Zhu, G. Cao and X. Zhao, Electrochim. Acta, 2015, 151, 8.
26. H. Lai, B. Feng, Y. Jiang, N. Shi, C. Liang, S. Chang, S. Guo, B. Cui and H. Cao, Mater. Lett., 2016, 166, 292.
27. D. Su, H. J. Ahn and G. Wang, Chem. Commun., 2013, 49, 3131.
28. X. Xie, D. Su, J. Zhang, S. Chen, A. K. Mondal and G. Wang, Nanoscale, 2015, 7, 3164.
29. Z. Li, J. Ding and D. Mitlin, Acc. Chem. Res., 2015, 48, 1657.
30. Y. Jiang, Z. Yang, W. Li, L. Zeng, F. Pan, M. Wang, X. Wei, G. Hu, L. Gu and Y. Yu, Adv. Energy Mater., 2015, 5, 1402104.
31. C. Guo, K. Zhang, Q. Zhao, L. Pei and J. Chen, Chem. Commun., 2015, 51, 10244.
32. H. Kim, J. E. Kwon, B. Lee, J. Hong, M. Lee, S. Y. Park and K. Kang, Chem. Mater., 2015, 27, 7258.
33. G. Pang, P. Nie, C. Yuan, L. Shen, X. Zhang, H. Li and C. Zhang, J. Mater. Chem. A, 2014, 2, 20659.
34. W. Li, Z. Yang, M. Li, Y. Jiang, X. Wei, X. Zhong, L. Gu and Y. Yu, Nano Lett., 2016, 16, 1546.
35. R. Ryoo and S. H. Joo, Stud. Surf. Sci. Catal., 2004, 148, 241.
36. H. Chang, S. H. Joo and C. Pak, J. Mater. Chem., 2007, 17, 3078.
37. L. A. Solovyov, A. N. Shmakov, V. I. Zaikovskii, S. H. Joo and R. Ryoo, Carbon, 2002, 40, 2477.
38. F. Kleitz, S. H. Choi and R. Ryoo, Chem. Commun., 2003, 17, 2136.
39. D. Saikia, T. H. Wang, C. J. Chou, J. Fang, L. D. Tsai and H. M. Kao, RSC Adv., 2015, 5, 42922.
40. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, third ed. Prentice Hall, N.J, 2001.
41. J. Ding, Z. Li, H. Wang, K. Cui, A. Kohandehghan, X. Tan, D. Karpuzovc and D. Mitlin, J. Mater. Chem. A, 2015, 3, 7100. 42. J. Zhu and D. Deng, Chem. Eng. Sci., 2016, 154, 54.
43. R. S. Kalubarme, J. Y. Lee and C. J. Park, ACS Appl. Mater. Interfaces, 2015, 7, 17226.
44. Y. C. Lu, C. Ma, J. Alvarado, T. Kidera, N. Dimov, Y. S. Meng and S. Okada, J. Power Sources, 2015, 284, 287.
45. Z. Li, J. Ding, H. Wang, K. Cui, T. Stephenson, D. Karpuzov and D. Mitlin, Nano Energy, 2015, 15, 369.
46. D. Su, C. Wang, H. Ahn and G. Wang, Phys. Chem. Chem. Phys., 2013, 15, 12543.
47. S. Li, Y. Wang, J. Qiu, M. Ling, H. Wang, W. Martens and S. Zhang, RSC Adv., 2014, 4 50148.
48. L. Pei, Q. Jin, Z. Zhu, Q. Zhao, J. Liang and J. Chen, Nano Res., 2015, 8, 184.
49. C. H. Wu, C. H. Wang, M. T. Lee and J. K. Chang, J. Mater. Chem., 2012, 22, 21466.
50. Y. Zhao, C. Wei, S. Sun, L. P. Wang and Z. J. Xu, Adv. Sci., 2015, 2, 1500097.
51. A. Jahel, C. M. Ghimbeu, A. Darwiche, L. Vidal, S. H. Garreau, C. Vix-Guterlac and L. Monconduit, J. Mater. Chem. A, 2015, 3, 11960.
52. V. L. Chevrier and G. Ceder, J. Electrochem. Soc., 2011, 158, A1011.
53. Y. Xu, Y. Zhu, Y. Liu and C. Wang, Adv. Energy Mater., 2013, 3, 128.
54. J. Ming, H. Ming, W. J. Kwak, C. Shin, J. Zheng and Y. K. Sun, Chem. Commun., 2014, 50, 13307. 55. W. Zhang, M. Dahbi and S. Komaba, Curr. Opin. Chem. Eng., 2016, 13, 36.
56. A. Ponrouch, E. Marchante, M. Courty, J. M. Tarascon and M. R. Palacin, Energy Environ. Sci., 2012, 5, 8572.
57. A. Ponrouch, R. Dedryvere, D. Monti, A. E. Demet, J. M. A. Mba, L. Croguennec, C. Masquelier, P. Johansson and M. R. Palacin, Energy Environ. Sci., 2013, 6, 2361.
58. J. Yue, W. Wang, N. Wang, X. Yang, J. Feng, J. Yang and Y. Qian, J. Mater. Chem. A, 2015, 3, 23194.
59. Y. Lu, M. Yanilmaz, C. Chen, M. Dirican, Y. Ge, J. Zhu and X. Zhang, ChemElectroChem, 2015, 2, 1947.
60. X. Xie, S. Chen, B. Sun, C. Wang and G. Wang, ChemSusChem, 2015, 8, 2948.
61. L. Fan, X. Li, B. Yan, J. Feng, D. Xiong, D. Li, L. Gu, Y. Wen, S. Lawes and X. Sun, Adv. Energy Mater., 2016, 6, 1502057.
62. W. Weppner and R. A. Huggins, J. Electrochem. Soc. 1977, 124, 1569.
63. X. H. Zhang, W. L. Pang, F. Wan, J. Z.Guo, H. Y. Lu?, J. Y. Li, Y. M. Xing, J. P. Zhang, and X. L. Wu, ACS Appl. Mater. Interfaces, 2016, 8, 20650.
64. Y. Wang, H. Li, P. He, E. Hosono and H. Zhou, Nanoscale, 2010, 2, 1294.
65. J. Park, J. W. Park, J. H. Han, S. W. Lee, K. Y. Lee, H. S. Ryu, K. W. Kim, G. Wang, J. H. Ahn and H. J. Ahn, Mater. Res. Bull., 2014, 58, 186.

Chapter-5

1. J. W. Choi and D. Aurbach, Nat. Rev. Mater., 2016,1, 16013.
2. H. Kim, H. Kim, Z. Ding, M. H. Lee, K. Lim, G. Yoon and K. Kang, Adv. Energy Mater., 2016, 6,1600943. 3. C. Vaalma, D. Buchholz, M. Weil and S. Passerini, Nat. Rev. Mater., 2018, 3, 18013.
4. N. Wongittharom, C. H. Wang, Y. C. Wang, C. H. Yang and J. K. Chang, ACS Appl. Mater. Interfaces, 2014, 6, 17564.
5. C. H. Wang, Y. W. Yeh, N. Wongittharom, Y. C. Wang, C. J. Tseng, S. W. Lee, W. S. Chang and J. K. Chang, J. Power Sources, 2015, 274, 1016.
6. H. Y. Li, C. H. Yang, C. M. Tseng, S. W. Lee, C. C. Yang, T. Y. Wu and J. K. Chang, J. Power Sources, 2015, 285, 418.
7. Y. You and A. Manthiram, Adv. Energy Mater., 2017, 1701785.
8. P. K. Nayak, L. Yang, W. Brehm and P. Adelhelm, Angew. Chem. Int. Ed., 2017, 57, 102.
9. P. Ge and M. Fouletier, Solid State Ion., 1988, 28–30, 1172.
10. B. Jache and P. Adelhelm, Angew. Chem. Int. Ed., 2014, 53, 10169.
11. W. Zhang, M. Dahbi and S. Komaba, Curr. Opin. Chem. Eng., 2016, 13, 36.
12. C. Bommier and X. Ji, Small, 2018, 14, 1703576.
13. S. Komaba, T. Ishikawa, N. Yabuchi, W. Murata, A. Ito and Y. Ohsawa, ACS Appl. Mater. Interfaces, 2011, 3, 4165.
14. P. Arora and Z. Zhang, Chem. Rev., 2004, 104, 4419.
15. Q. Zhang, Z. Yu, P. Du and C. Su, Recent Patents on Nanotechnology, 2010, 4, 100.
16. J. Y. Hwang, S. T. Myung and Y. K. Sun, Chem. Soc. Rev., 2017, 46, 3529.
17. S. L. Chou, Y. Pan, J. Z. Wang, H. K. Liu and S. X. Dou, Phys. Chem. Chem. Phys., 2014, 16, 20347.
18. J. T. Li, Z. Y. Wu, Y. Q. Lu, Y. Zhou, Q. S. Huang, L. Huang and S. G. Sun, Adv. Energy Mater., 2017, 7, 1701185.
19. N. Yabuuchi, K. Kubota, M. Dahbi and S. Komaba, Chem. Rev., 2014, 114, 11636.
20. X. Wang, C. Yao, F. Wang and Z. Li, Small, 2017, 13, 1702240.
21. M. Dahbi, T. Nankano, N. Yabuchi, T. Ishikawa, K. Kubota, M. Fukunishi, S. Shibahara, J. Y. Son, Y. T. Cui, H. Oji and S. Komaba, Electrochem. Commun., 2014, 44, 66.
22. Y. Shi, X. Zhou and G. Yu, Acc. Chem. Res., 2017, 50, 2642.
23. S. Komaba, K. Okushi, T. Ozeki, H. Yui, Y. Katayama, T. Miura, T. Saito and H. Groult, Electrochem. Solid State Lett., 2009, 12, A107.
24. J. Zhao, X. Yang, Y. Yao, Y. Gao, Y. Sui, B. Zou, H. Ehrenberg, G. Chen and F. Du, Adv. Sci., 2018, 5, 1700768.
25. V. D. Asta, D. Buchholz, L. G. Chagas, X. Dou, C. Ferrara, E. Quartarone, C. Tealdi and S. Passerini, ACS Appl. Mater. Interfaces, 2017, 9, 34891.
26. K. Chen, W. Zhang, L. Xie, W. Chen, X. Xiang, M. Wan and Y. Huang, ACS Appl. Mater. Interfaces, 2017, 9, 1536. 27. S. Y. Hong, Y. Kim, Y. Park, A. Choi, N. S. Choi and K. T. Lee, Energy Environ. Sci., 2013, 6. 2067. 28. Z. Li, J. Ding and D. Mitlin, Acc. Chem. Res., 2015, 48, 1657. 29. B. Huang, Z. Pan, X. Su and L. An, J. Power Sources, 2018, 395, 41. 30. J. Patra, H. C. Chen, C. H. Yang, C. T. Hsieh, C. Y. Su and J. K. Chang, Nano Energy, 2016, 28, 124. 31. J. Patra, P. C. Rath, C. H. Yang, D. Saikia, H. M. Kao and J. K. Chang, Nanoscale, 2017, 9, 8674.
32. Y. Y. Wang, B. H. Hou, Y. N. Wang, H. Y. Lu, J. Z. Guo, Q. L. Ning, J. P. Zhang, C. L. Lu and X. L. Wu, J. Mater. Chem. A, 2018, 6, 6578. 33. M. Dirican, Y. Lu, Y. Ge, O. Yildiz and X. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 18387. 34. H. Z. Li, L. Y. Yang, J. Liu, S. T. Li, L. B. Fang, Y. K. Lu, H. R. Yang, S. L. Liu and M. Lei, J. Power Sources, 2016, 324, 780.
35. Y. Wei, Z. Wang, H. Ye, J. Mou, D. Lei, Y. Liu, W. Lv, B. Li, F. Kang and Y. B. He, ChemistrySelect, 2017, 2, 11365.
36. Y. Zhang, H. Hou, X. Yang, J. Chen, M. Jing, Z. Wu, X. Jia and X. Ji, J. Power Sources, 2016, 305, 200.
37. J. Song, Z. Yu, M. L. Gordin, X. Li, H. Peng and D. Wang, ACS Nano, 2015, 9, 11933.
38. Y. Zhang, M. Ji, Z. Liu, Y. He, Y. Hu, Q. Yang, B. Lia and J. Wang, RSC Adv., 2017, 7, 25678.
39. M. J. P. Munoz, E. C. Martinez, J. L. G. Camer and T. Rojo, Electrochim. Acta, 2016, 200, 123.
40. Z. J. Han, K. Yamagiwa, N. Yabuuchi, J. Y. Son, Y. T. Cui, H. Oji, A. Kogure, T. Harada, S. Ishikawa, Y. Aoki and S. Komaba, Phys.Chem.Chem.Phys., 2015, 17, 3783.
41. Q. Fan, W. Zhang, J. Duan, K. Hong, L. Xue and Y. Huang, Electrochim. Acta, 2015, 174, 970.
42. Y. Yui, M. Hayashi, K. Hayashi and J. Nakamura, Solid State Ion., 2016, 288, 219.
43. A. Ponrouch, E. Marchante, M. Courty, J. M. Tarascona and M. R. Palac?n, Energy Environ. Sci., 2012, 5, 8572.
44. G.G. Eshetu, S. Grugeon, H. Kim, S. Jeong, L. Wu, G. Gachot, S. Laruelle, M. Arman and S. Passerini, ChemSusChem, 2016, 9, 462.
45. Y. S. Park, E. S. Oh and S. M. Lee, J. Power Sources, 2014, 248, 1191. 46. F. Kleitz, S. H. Choi and R. Ryoo, Chem. Commun., 2003, 17, 2136. 47. N. Cuesta, A. Romes, I. Camean, C. Antuna and A. B. Garcia, Electrochim. Acta, 2015, 155, 140.
48. N. P. W. Pieczonka, V. Borgel, B. Ziv, N. Leifer, V. Dargel, D. Aurbach, J. H. Kim, Z. Liu, X. Huang, S. A. Krachkovskiy, G. R. Goward, I. Halalay, B. R. Powell and A. Manthiram, Adv. Energy Mater., 2015, 5, 1501008.
49. L. Chen, X. Xie, J. Xie, K. Wang and J. Yang, J. Appl Electrochem., 2006, 36, 1099.
50. H. Gao, B. Ji, I. L. Jager, E. Arzt and P. Fratzl, P. Proc. Natl. Acad. Sci. U.S.A, 2003, 100, 5597.
51. H. C. Chen, J. Patra, S. W. Lee, C. J. Tseng, T. Y. Wu, M. H. Lin and J. K. Chang, J. Mater. Chem. A, 2017, 5, 13776.
52. J. W. Wang, X. H. Liu, S. X. Mao and J. Y. Huang, Nano Lett., 2012, 12, 5897.
53. V. L. Chevrier and G. Ceder, J. Electrochem. Soc., 2011, 158, A1011.
54. J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E. M. Lotfabad, B. C. Olsen, and D. Mitlin, ACS Nano, 2013, 7, 11004. 55. Y. X. Wang, Y. G. Lim, M. S. Park, S. L. Chou, J. H. Kim, H. K. Liu, S. X. Dou and Y. J. Kim, J. Mater. Chem. A, 2014, 2, 529. 56. J. Ding, Z. Li, H. Wang, K. Cui, A. Kohandehghan, X. Tan, D. Karpuzovc and D. Mitlin, J. Mater. Chem. A, 2015, 3, 7100. 57. N. Yabuchi, K. Shimomura, Y. Shimbe, T. Ozeki, J. Y. Son, H. Oji, Y. Katayama, T. Miura and S. Komaba, Adv. Energy Mater., 2011, 1, 759. 58. S. Komaba, N. Yabuchi, T. Ozeki, Z. J. Han, K. Shimomura, H. Yui, Y. Katayama and T. Miura, J. Phys. Chem. C, 2012, 116, 1380. 59. S. Komaba, K. Shimomura, N. Yabuchi, T. Ozeki, H. Yui and K. Konno, J. Phys. Chem. C, 2011, 115, 13487. 60. L. Fan, X. Li, B. Yan, J. Feng, D. Xiong, D. Li, L. Gu, Y. Wen, S. Lawes and X. Sun, Adv. Energy Mater., 2016, 6, 1502057. 61. J. Patra, H. T. Huang, W. Xue, C. Wang, A. S. Helal, J. Li and J. K. Chang, Energy Storage Mater., 2019, 7, 64.
62. K Takad, Y. Yamada, E. Watanabe, J. Wang, K. Sodeyama, Y. Tateyama, K. Hirata, T. Kawasa and A. Yamada, ACS Appl. Mater. Interfaces, 2017, 9, 33802. 63. H. Kim, J. S. Park, S. H. Sahgong, S. Park, J. K. Kim and Y. Kim, J. Mater. Chem. A, 2014, 2, 19584.
64. Y. E. Eli and V. R. Koch, J. Electrochem. Soc., 1997, 144, 2968.
65. X. F. Luo, A. S. Helal, C. T. Hsieh, J. Li and J. K. Chang, Nano Energy, 2018, 49, 515.

Chapter 6

1. S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki and R. Ryoo, Nature, 2001, 412, 169.
2. D. Zareyee and M. Serehneh, J. Mol. Catal. Chem., 2014, 391, 88.
3. P.A. Bazula, A. H. Lu, J. J. Nitz and F. Schuth, Microporous Mesoporous Mater., 2008, 108, 266.
4. A. H. Lu, J. J. Nitz, M. Comotti, C. Weidenthaler, K. Schlichte, C. W. Lehman, O. Terasaki and F. Schuth, J. Am. Chem. Soc., 2010, 132, 14152. 5. J. Hu, C. F. Sun, E. Gillette, Z. Gui, Y. Wang and S. B. Lee, Nanoscale, 2016, 8,12958. 6. W. Zhang, Q. Wang, H. Wu, P. Wu and M. He, Green Chem., 2014, 16, 4767.
7. H. Cai, L. Tian, B. Huang, G. Yang, D. Guan, H. Huang, Microporous Mesoporous Mater., 2013, 170, 20.
8. Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama and A. Yamada, J. Am. Chem. Soc., 2014, 136, 5039.
9. J. Zheng, J. A. Lochala, A. Kwok, Z. D. Deng and J. Xiao, Adv. Sci., 2017, 4,1700032.
10. J. Lee, Y. Lee, J. Lee, S. M. Lee, J. H. Choi, H. Kim, M. S. Kwon, K. Kang, K. T. Lee and N. S. Choi, ACS Appl. Mater. Interfaces, 2017, 9, 3723.
11. K. Takada, Y. Yamada, E. Watanabe, J. Wang, K. Sodeyama, Y.Tateyama, K. Hirata, T. Kawase and A. Yamada, ACS Appl. Mater. Interfaces, 2017, 9, 33802.
12. Y. Yamada, K. Usui, C.H. Chiang, K. Kikuchi, K. Furukawa and A. Yamada, ACS Appl. Mater. Interfaces, 2014, 6, 10892.
13. J. Patra, H. T. Huang, W. Xue, C. Wang, A. S. Helal, J, Li and J. K. Chang, Energy Storage Mater., 2019, 16,146.
指導教授 張仍奎(Jeng-Kuei Chang) 審核日期 2018-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明