博碩士論文 102481017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:54.234.190.237
姓名 呂英傑(Ying-Chieh Lu)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 綠色產品與環保材料應用之技術發展─以LED燈泡及TiO2光觸媒空氣清淨機為例
(The Study of Technology Development on Energy SavingProduct-LED Light Bulb and Environmental FriendlyMaterial-TiO2 Based Air Cleaner)
相關論文
★ 二氧化鈦技術生命週期之研究★ 整體後勤業參與同步工程於產品開發績效關係之研究—以中科院為例
★ 筆記型電腦之IFA/PIFA天線技術生命週期分析★ 國籍航空公司經營績效分析-以資料包絡分析方法分析
★ 從專利分析看3D IC技術與市場發展★ 影響企業導入電子發票系統成效之因素探討
★ 影響企業導入數位學習成功因素之探討-以個案公司為例★ 產品生命週期管理系統導入成功要素之探討--以S科技公司為例--
★ 組織創新能力影響因素研究★ 製 造 業 閒 置 資 產 轉 售 平 台 製造業閒置資產轉售平台-以廣達電腦股份有限公司為例
★ 供應商先行者優勢探討-以宸鴻科技為例★ 團隊領導者創新特質與開放式創新專案關係之研究
★ 從商業生態系統談樞紐者策略-以Apple 與Nokia 為例★ 個人電腦的競爭與發展策略-以台灣電子產業為例
★ 應用兩階段資料包絡分析法評估高級職業學校之經營績效★ ERP導入的促進因素:使用者觀點
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 地球暖化致使環境變遷,節能減碳與發展環保替代材料為全球重視議題。本研究以專利分析方法探討綠色節能產品與環保材料未來技術之發展。以節能產品LED燈泡為例,本研究利用美國專利商標局(USPTO)資料庫為範疇進行專利檢索,調查LED燈泡技術發展趨勢。研究顯示美國於國家、公司及技術等三層級皆為領先的國家,主要技術為D26/2、362/249.n與313/46,以D26/2為關鍵;另一方面以TiO2光觸媒於空氣清淨機應用為例,以USPTO之專利、WOS期刊文獻及標竿企業產品為輔,探討TiO2光觸媒空氣清淨機技術發展趨勢,研究結果顯示422/122與422/186.3領域為主要關鍵技術,專利技術與期刊文獻均以光觸媒催化效率、濾網載體及其結構為主要技術及研究方向,標竿產品分析發現濾網結構及載體皆屬有機材質,經UV照射後將使材質老化及分解,此應是光觸媒應用之最大問題點。盼本研究結果能對LED燈泡及TiO2於空氣清淨機應用領域的業界與研究單位在未來技術發展上能有所助益。
摘要(英)
ABSTRACT
The industrialization have accelerate the economic development and improved living condition, however, the side effect of convenient modern life reflects in excessive consumption of gasoline energy, climate change and global warming. As the concept of environmental protection and cherish scare resources rise, the technology development of energy saving and green product have become a goal for the human kind. This study takes the current technical development of green energy saving product- LED light bulb, and environmental friendly material- TiO2 based air cleaner as an example to perform patent analysis. As for energy saving products, we retrieve LED bulb patent data from the USPTO patent database. United State has highest performance among all countries. The result of USPC (United States Patent Classification) technical field analysis shows that patent of green energy saving LED light bulbs primarily concentrated in technical field of D26/2, 362/249, n, and 313/46. As for environmental friendly material, this study adopts air cleaner with core technology structure of TiO2 photocatalyst materials as example to explore the technical development of TiO2 photocatalyst. Science, technology, and practical application of benchmarking company products were analyzed to explore technical roadmap of future TiO2 air cleaner development. From the comparison table of USPC patent quantity in the second section, the primary technology clusters on 422/122, and 422/186.3. The results of study show that the traditional filter are organic materials, and the reaction of UV and TiO2 photolysis will cause material aging and decomposition, so it cannot be used in the long-term. These are the biggest problems when applying photo catalyst onto the air cleaner filter. We demonstrate the development trend and operation of LED light bulbs and TiO2 air cleaner from different aspects to show that the technology gap is an important reference for other relevant companies that plan to develop new technologies and increase their competitiveness in the future.
關鍵字(中) ★ 綠色照明
★ LED燈泡
★ 光觸媒
★ 二氧化鈦
★ 空氣清淨機
★ 專利分析
關鍵字(英) ★ Green Lights
★ LED (Light) Bulb
★ TiO2
★ Photocatalyst
★ Air Cleaner
★ Patent Analysis
論文目次
摘要....................................................................................................................................I
ABSTRACT......................................................................................................................II
誌謝..................................................................................................................................IV
TABLE OF CONTENT..................................................................................................V
LIST OF TABLES........................................................................................................VII
LIST OF FIGURES.....................................................................................................VIII
1.Introduction..................................................................................................1
1.1 Research Background and Motivation.....................................................................1
1.2 Research Purpose.....................................................................................................3
1.3 Research Process......................................................................................................4
2.Current Status of the Industries and Literature Review...........................................6
2.1 Patent Analysis.........................................................................................................6
2.2 Current Status of LED Lighting Industry.................................................................7
2.2.1 LED Lighting Industry......................................................................................7
2.2.2 LED Lighting Literature Review....................................................................11
2.3 Current Status of TiO2 Photocatalyst Industry.......................................................13
2.3.1 TiO2 Photocatalyst Industry............................................................................13
2.3.2 TiO2 Photocatalyst Literature Review.............................................................21
3.Research Method.........................................................................................................24
3.1 Research Structure..................................................................................................24
3.2 Data Sources...........................................................................................................25
3.3 The Patent Collection.............................................................................................26
3.4 The Literature Collection.......................................................................................28
4.Empirical Analysis.......................................................................................................30
4.1 LED Bulb Technology............................................................................................30
4.1.1 Analysis of Patent Quantity.............................................................................30
4.1.2 Country Analysis.............................................................................................32
4.1.3 Company Analysis..........................................................................................34
4.1.4 Inventor Analysis…........................................................................................37
4.1.5 USPC Analysis................................................................................................39
4.2 TiO2 Photocatalyst Technology..............................................................................41
4.2.1 Patent Analysis................................................................................................42
4.2.2 Journal Literature Analysis.............................................................................46
4.2.3 Technical Analysis of Benchmark Enterprises with Leading Technologies..49
5.Conclusion and Future Research...............................................................................52
5.1 Conclusion.............................................................................................................52
5.2 Limitations and Future Research...........................................................................53
References.......................................................................................................................55
參考文獻
1. Abraham, B. P., & Moitra, S. D. (2001). Innovation assessment through patent analysis. Technovation, 21(4), 45-252.
2. Anastas, P.T. & Kirchhoff, M.M. (2002). Origins, current status, and future challenges of green chemistry. Accounts of Chemical Research, 35(9), 686-694.
3. Anpo, M. (2009). Utilization of TiO2 photocatalysts in green chemistry. Pure and Applied Chemistry, 72(7), 1265-1270.
4. Awazu. K., Fujimaki. M., Rockstuhl. C., Tominaga. J., Murakami. H., Ohk. Y., Yoshida. N. & Watanabe. T. (2008). A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. Journal of the American Chemical Society, 130(5), 1676-1680.
5. Baba, R., Nakabayashi, S., Fujishima, A. & Honda, K. (1985). Investigation of the mechanism of hydrogen evolution during photocatalytic water decomposition on metal-loaded semiconductor powders. The Journal of Physical Chemistry, 89(10), 1902-1905.
6. Bang, Y.Y., Lee, D.S., Lim, S.R. (2017). Identification of principal design features to develop environmental friendly Light-Emitting Diode (LED) bulbs. Journal of Nanoelectronics and Optoelectronics, 12(6), 625-630.
7. Bianchi, C.L., Pirola, C., Galli, F., Cerrato, G., Morandi, S. & Capucci, V. (2015), Pigmentary TiO2: A challenge for its use as photocatalyst in NOx air purification. Chemical Engineering Journal, 261, 76-82.
8. Bogler, A. & Meierhofer, R. (2015). The challenge of producing and marketing colloidal silver water filters in Nepal. Water, 7(7), 3599-3612.
9. Breitzman, A. (2003). Patent and Market Value Forecasting. International Conference of the Society of Competitive Intelligence Professionals, Anaheim, California.
10. Brooks, H. (1994). The relationship between science and technology. Research Policy, 23(5), 477-486.
11. Chen Y.S., Lai K.K., Shih I.C. & Chan C.L. (2006). Using patent analysis to explore the development of hybrid electric vehicle. Boundless Treasure Academic Journal User Index, 9(1), 46-70.
12. Cooper, R. S., & Merrill, S. A. (1997). U.S. industry: Restructuring and Renewal – Industrial Research and Innovation Indicators, Washington, D.C.: National Academy Press.
13. Ernst, H. (1995). Patenting strategies in the german mechanical engineering industry and their relationship to company performance. Technovation, 15(4), 225-240.
14. Frank S.N. & Bard A.J. (1997). Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. Journal of the American Chemical Society, 99 (1), 303-304.
15. Formoso, P., Muzzalupo, R., Tavano, L., De Filpo, G. & Pasquale N.F. (2016). Nanotechnology for the environment and medicine. Mini Reviews in Medicinal Chemistry, 16(8), 668-675.
16. Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358), 37-38.
17. Furman, J., Porter, L.M.E. & Stern, S. (2002). The determinants of national innovative capacity. Research Policy, 31(6), 899-933.
18. Garfield. K. & Potter. J., US Patent, No.7820100B2. 2007.
19. Garrard, J. (2016). Health sciences literature review made easy. Jones & Bartlett Publishers.
20. Gratzel, M. (2001). Photoelectrochemical cells, Nature, 41(4), 338-344.
21. Gyungmi. J., Yujin. J. & Byungun. Y. (2014). Technology-driven roadmaps for identifying new product/market opportunities: Use of text mining and quality function deployment. Advanced Engineering Informatics, 29(1), 1474-0346.
22. Hellmann, T (2007). The role of patents for bridging the science to market gap. Journal of Economic Behavior & Organization, 63(4), 624-647.
23. Huang, CC, Zhang, ML, Zou, J, Zhu, AX, Chen, X, Mi, Y, Wang, YH, Yang, H & Li, YM (2015), Changes in land use, climate and the environment during a period of rapid economic development in Jiangsu Province, China. Science of the Total Environment, 536, 173-181.
24. Hung S.W. & Wang A.P. (2010). Examining the small world phenomenon in the patent citation network - A case study of the radio frequency identification (RFID) network, Scientometrics, 82(1), 121-134.
25. Hong, X.T., Wang, Z.P. & Cai, W.M. (2005). Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. American Chemical Society Journals, 17(4), 1548-1552.
26. IEK, Cited Date: 08/13/2014, http://www.semi.org/zh/sites/semi.org/
27. Jacob, DJ & Winner, DA (2009), Effect of climate change on air quality. Atmospheric Environment, 43(1), 51-63.
28. Ji, E.K., Song, Y.H., Lee, M.J. & Yoon, D.H. (2015). Thermally stable Phosphor-in-glass for enhancement of characteristic in high power LED applications. Materials Letters, 157, 89-92.
29. Jones, AP (1999), Indoor air quality and health. Atmospheric Environment, 33(28), 4535-4564.
30. Jun, S., & Sung Park, S. (2013). Examining technological innovation of Apple using patent analysis. Industrial Management & Data Systems, 113(6), 890-907.
31. Khorasanizadeh, H., Parkkinen, J., Parthiban, R. & Moore, J.D. (2015). Energy and economic benefits of LED adoption in Malaysia. Renewable & Sustainable Energy Reviews, 49, 629-637.
32. Le, T.S., Dao, T.H., Nguyen, D.C., Nguyen, H.C. & Balikhin, I.L. (2015). Air purification equipment combining a filter coated by silver nanoparticles with a nano-TiO2 photocatalyst for use in hospitals. Advances in Natural Sciences-Nanoscience and Nanotechnology, 6(1).
33. Lettmann, C., Hildenbrand, K. & Kisch, H. (2001). Visible light photo degradation of 4-chlorophenol with a coke-containing Titanium Dioxide. Applied Catalysis B-Environmental, 32(4), 215-227.
34. Lu, W.M. & Hung, S.W. (2011). Exploring the operating efficiency of technology development programs by an intellectual capital perspective - A case study of Taiwan. Technovation, 31(8), 374-383.
35. Lupu, M. & Hanbury, A. (2013). Patent retrieval. Foundations and TrendsR in Information Retrieval, 7(1), 1-97.
36. Lyson-Sypien, B., Radecka, M., Rekas, M., Swierczek, K., Michalow-Mauke, K., Graule, T. & Zakrzewska, K. (2015). Grain-size-dependent gas-sensing properties of TiO2 nanomaterials. Sensors and Actuators B: Chemical, 211, 67-76.
37. Martino, J. P. (2003). A review of selected recent advances in technological forecasting. Technological Forecasting and Social Change, 70(8), 719-733.
38. Marcia, J.B., (2002), Conceptions of Information as Evidence. American Society for Information Science and Technology Annual Meeting, Philadelphia, PA.
39. Mills, B. & Schleich, J. (2014). Household transitions to energy efficient lighting. Energy Economics, 46, 151-160.
40. Mogee, M.E. (1991). Using patent data for technology analysis and planning. Research Technology Management, 34(4), 43-49.
41. Molhave, L., Bodi, B. & Ole, F.P. (1986). Human reactions to low concentrations of volatile organic compounds. Environment International, 12(1-4), 167-175.
42. Nikasinovic, L., Just, J., Sahraoui, F., Seta, N., Grimfeld, A. & Monas, I. (2006). Nasal inflammation and personal exposure to fine particles PM2.5 in asthmatic children. Journal of Allergy and Clinical Immunology, 117(6), 1382-1388.
43. Park, H., Park, Y., Kim, W., & Choi, W. (2013). Surface modification of TiO2 Photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 15, 1-20.
44. Parr, G.R., Gardner, L.K. & Toth, R.W. (1985). Titanium: The mystery metal of implant dentistry. Dental materials aspects. The Journal of Prosthetic Dentistry, 54(3), 410-414.
45. Pavitt, K. (1998). Uses and Abuses of Patent Statistics, in Handbook of Quantitative Studies of Science and Technology (Ed.) A.F.J. van Raan, Elsevier, Amsterdam, 509-536.
46. Pelaez, M., Nolan, N.T. & Pillai, S.C. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125, 331-349.
47. Pham, T.D. & Lee, B.K. (2014). Feasibility of silver doped tio2/glass fiber photocatalyst under visible irradiation as an indoor air germicide. International Journal of Environmental Research and Public Health, 11(3), 3271-3288.
48. Shibata, N., Kajikawa, Y. & Sakata, I. (2011). Detecting potential technological fronts by comparing scientific papers and patents. Foresight, 13(5), 51-60.
49. Singh, J., Sahu, K., Pandey, A., Kumar, M., Ghosh, T., Satpati, B. & Mohapatra, S. (2017). Atom beam sputtered Ag-TiO2 plasmonic nanocomposite thin films for photocatalytic applications. Applied Surface Science, 41(1), 347-354.
50. Song, Z.M., Chen, N., Liu, J.H., Tang. H., Deng, X.Y., Xi, W.S., Han. K., Cao. A., Liu, Y.F. & Wang. H.F. (2015). Biological effect of food additive titanium dioxide nanoparticles on intestine: An in vitro study. Journal of Applied Toxicology, 35(10), 1169-1178.
51. Tetri, E., Sarvaranta, A. & Syri, S. (2014). Potential of new lighting technologies in reducing household lighting energy use and CO2 emissions in Finland. Energy Efficiency, 7(4), 559-570.
52. van de Kaa, G. & Greeven, M. (2017). LED standardization in China and South East Asia: Stakeholders, infrastructure and institutional regimes. Renewable & Sustainable Energy Reviews, 72, 863-870.
53. Waste Electrical & Electronic Equipment (WEEE), Cited Date: 24 /04 /2017
http://ec.europa.eu/environment/waste/weee/index_en.htm
54. World Health Organization, and UNAIDS (2006). Air quality guidelines: global update 2005. World Health Organization.
55. Wu, Y.C. & Lee, P.J (2005). A patenting view of its:Taiwan and China. Transportation Planning Journal, 34(4), 575-608.
56. Xie, Z. & Miyazaki, K. (2013). Evaluating the effectiveness of keyword search strategy for patent identification. World Patent Information, 35(1), 20-30.
57. Yeo, T.H.C. & Tan. I.A.W. (2012). Abdullah. M.O., Development of adsorption air-conditioning technology using modified activated carbon–A review. Renewable and Sustainable Energy Reviews, 16(5), 3355-3363.
58. Zhang, K.M. & Wen, Z.G. (2008). Review and challenges of policies of environmental protection and sustainable development in China. Journal of Environmental Management. 88(4), 1249-1261.
指導教授 洪秀婉(Shiu-WAN Hung) 審核日期 2017-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明