博碩士論文 102521002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.22.79.125
姓名 徐延慶(Yen-Ching Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具頻寬校正機制之寬頻三倍頻鎖相迴路設計
(A Wide Range Triple-Push Phase-Locked Loop with Bandwidth Calibration)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出一個可操作在0.8 GHz ~ 8.1 GHz,並具有頻寬校正機制之寬頻操作鎖相迴路。藉由三推式倍頻技術,將多相位振盪器輸出進行諧波混波後產生三倍頻,此三倍頻器是獨立於鎖相迴路之外,因此不會影響原鎖相迴路迴授系統,但又能擴增三倍的頻率輸出,因此能減緩寬範圍操作所帶來的鎖相迴路迴路頻寬設計困難度。其中在振盪器與三倍頻器的部分使用差動式的電路架構來強化三次諧波能量,並透過外部控制碼來供使用者選擇鎖相迴路輸出頻率,以同一組控制碼調整電荷幫浦之電流以確保迴路穩定性,達到頻寬校正之機制。此外利用高匹配度的電路佈局方式取代其他相位平均的電路技術,不僅可以有效減少多相位訊號之間的不匹配,也不會增加額外的硬體面積與功率消耗。

本論文之寬頻操作鎖相迴路使用90 nm CMOS製程實現晶片,供應電壓為1 V,鎖相迴路輸出時脈為0.8 GHz ~ 2.7 GHz,而三倍頻器輸出時脈為2.4 GHz ~ 8.1 GHz,所有頻率的方均根抖動(JitterRMS)表現皆小於5%時脈週期,在頻寬效正的部分,在1 MHz位置的相位雜訊最大的改善量為10 dBc/Hz,此時的輸出頻率為2.7 GHz。整體晶片所佔面積為1.20 mm2,電路所佔面積為0.048 mm2,電路操作在最高頻率時的功率消耗為13.9 mW。
摘要(英) A 0.8 ~ 8.1 GHz wide range phase-locked loop (WRPLL) with bandwidth calibration mechanism is proposed. In this thesis, triple-push technique is used to extend the oscillator tuning range without influence the stability of phase-locked loop. Furthermore, it can relieve difficulties effectively in design loop bandwidth for wide range application. For the weakness of the tripler output power, differential structure are used in oscillator and tripler to enhance 3rd harmonic energy. The output swing of tripler is about twice as large as the traditional single-ended structure. The off-chip control signals are used to adjust both divider ratio and charge pump current in order to maintain the bandwidth and stability across the operating range. In a addition, instead of using any other phase averaging techniques, this thesis proposed a highly symmetric layout method to reduce phases mismatch without increase extra area cost.

The experiment chip of the proposed WRPLL was implemented with 90 nm CMOS process. The measured output frequency is 0.8 ~ 2.7 GHz for PLL output and 2.4 ~ 8.1 GHz for tripler output at 1.0 V supply voltage with 13.9 mW power consumption at the highest operating frequency. The maximum improvement of phase noise after bandwidth calibration is 10 dBc/Hz at 1 MHz frequency offset at 2.7 GHz output frequency. The full chip area is 1.20 mm2 and the core area is 0.048 mm2.
關鍵字(中) ★ 三倍頻
★ 頻寬校正
★ 寬頻鎖相迴路
關鍵字(英) ★ Triple-Push
★ Bandwidth Calibration
★ Wide Range PLL
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 2
第二章 寬頻操作鎖相迴路先前技術探討 5
2.1 鎖相迴路簡介與系統分析 5
2.2 寬頻操作鎖相迴路簡介 12
2.2.1 頻寬校正機制 13
2.2.1.1 調整參考頻率之頻寬校正方法 14
2.2.1.2 調整除數之頻寬校正方法 15
2.3 寬頻操作鎖相迴路先前技術探討與面臨到的問題 16
2.3.1 使用自我偏壓技術之抗製程變異鎖相迴路[5] 16
2.3.2 具數位式自我頻寬校正之鎖相迴路[7] 17
2.3.3 全數位式寬頻操作鎖相迴路[10] 19
2.3.4 寬範圍操作之三推式環形振盪器[8] 21
2.3.5 高輸出能量之三推式環形振盪器[9] 23
2.3.6 延遲鎖定迴路為基礎之頻率合成器[11] 24
2.4 本論文之寬頻鎖相迴路預計規格 25
第三章 具三推式倍頻技術之寬頻操作鎖相迴路 27
3.1 設計概念 27
3.2 電路架構與操作 27
3.2.1 三推式壓控振盪器之操作 28
3.2.2 頻寬控制器之操作 31
3.3 行為模擬 35
第四章 子電路架構設計考量與模擬 39
4.1 寬頻操作鎖相迴路之子電路設計 39
4.1.1 相位頻率偵測器 39
4.1.2 電荷幫浦 41
4.1.3 迴路濾波器 43
4.1.4 電壓控制振盪器 43
4.1.5 多模數除頻器 46
4.2 差動式三倍頻器之電路設計 48
4.3 頻寬控制器之電路設計 50
4.4 電壓控制振盪器之佈局考量 52
第五章 電路模擬與晶片量測結果 57
5.1 設計流程 57
5.2 佈局後電路模擬 58
5.2.1 寬頻操作鎖相迴路 58
5.2.2 差動式三倍頻器 60
5.3 電路佈局 62
5.4 晶片照相與量測環境設定 66
5.5 晶片量測結果 71
5.5.1 寬頻操作鎖相迴路量測結果 72
5.5.2 差動式三倍頻器量測結果 75
5.5.3 頻寬校正機制量測結果 79
5.6 規格比較 82
第六章 結論與未來研究方向 85
6.1 結論 85
6.2 未來研究方向 86
參考文獻 87
參考文獻 [1] 黃淨萱, “0.5-V 1.25-GHz 鎖相迴路之設計與實現,“ 碩士論文, 國立中央大學, 2008.
[2] 李柏毅, “具數位頻帶選擇器和可適性相位頻率偵測器之快速鎖定鎖相迴路,“ 碩士論文, 國立中央大學, 2013.
[3] B. Razavi, Design of Integrated Circuits for Optical Communicaions, 2nd Edition, John Wiley, 2012.
[4] Jaeha Kim, Mark A. Horowitz, Gu-Yeon Wei, “Design of CMOS Adaptive-Bandwidth PLL/DLLs : A General Approach,“ IEEE Trans. Circuit Syst. II, vol. 50, no. 11, pp. 860-869, Nov. 2003.
[5] John G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” IEEE J. Solid-State Circuits, vol. 31 , no. 11 , pp. 1723-1732, Nov. 1996.
[6] I-Ting Lee, Yun-Ta Tsai, Shen-Iuan Liu, “A Wide-Range PLL Using Self-Healing Prescaler VCO in 65-nm CMOS,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 21, no. 2, pp. 250-258, Feb. 2013.
[7] Tsuyoshi Ebuchi, Yoshihide Komatsu, Tatsuo Okamoto, Yukio Arima, Yuji Yamada, Kazuaki Sogawa, Kouji Okamoto, Takashi Morie, Takashi Hirata, Shiro Dosho, Takefumi Yoshikawa, “A 125–1250 MHz Process-Independent Adaptive Bandwidth Spread Spectrum Clock Generator With Digital Controlled Self-Calibration,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 763-774, Mar. 2009.
[8] Chung-Chun Chen, Chao-Chieh Li, Bo-Jr Huang, Kun-You Lin, Huei Wang, “Ring-Based Triple-Push VCOs With Wide Continuous Tuning Ranges,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 9, pp. 217 3-2183, Sept. 2009.
[9] Omeed Momeni, Ehsan Afshari, “High Power Terahertz and Millimeter-Wave Oscillator Design A Systematic Approach,” IEEE J. Solid-State Circuits, vol. 46, no. 3, pp. 583-597, Mar. 2011.
[10] JosÉ A. Tierno, Alexander V. Rylyakov, Daniel J. Friedman, “A Wide Power Supply Range, Wide Tuning Range, All Static CMOS All Digital PLL in 65 nm SOI,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 42-51, Jan. 2008.
[11] George Chien, Paul R. Gray, “A 900-MHz Local Oscillator Using a DLL-Based Frequency Multiplier Technique for PCS Applications,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1996-1999, Dec. 2000.
[12] Ju-Ming Chou, Yu-Tang Hsieh, Jieh-Tsorng Wu, “Phase Averaging and Interpolation Using Resistor Strings or Resistor Rings fot Multi-Phase Clock Generation,” IEEE Trans. Circuit Syst. I, vol. 53, no. 5, pp. 984-991, May. 2006.
[13] Bruno W. Garlepp, Kevin S. Donnelly, Jun Kim, Pak S. Chau, Jared L. Zerbe, Charles Huang, Chanh V. Tran, Clemenz L. Portmann, Donald Stark, Yiu-Fai Chan, T. H. Lee, M. A. Horowitz,” A Portable Digital DLL for High-Speed CMOS Interface Circuits,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 632-644, May. 1999.
[14] Jaeha Kim, “Adaptive-Bandwidth Phase-Locked Loop With Continuous Background Frequency Calibration,” IEEE Trans. Circuit Syst. II, vol. 56, no. 3, pp. 205-209, Mar. 2009.
[15] Wenjing Yin, Rajesh Inti, Amr Elshazly, Brain Young, Pavan Kumar Hanumolu, “A 0.7-to-3.5 GHz 0.6-to-2.8 mW Highly Digital Phase-Locked Loop With Bandwidth Tracking,” IEEE J. Solid-State Circuits, vol. 46, no. 8, pp. 1870-1880, Aug. 2011.
[16] Chang-Hyeon Lee, Lindel Kabalican, Yan Ge, Hendra Kwantono, Greg Unruh, Mark Chambers, Ichiro Fujimori, “A 2.7 GHz to 7 GHz Fractional-N LC-PLL Utilizing Multi-Metal Layer SoC Technology in 28 nm CMOS,“ IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 856-866, April. 2015.
[17] Janusz Grzyb, Yan Zhao, Ullrich R. Pfeiffer, “A 288-GHz Lens-Integrated Balanced Triple-Push Source in a 65-nm CMOS Technology,” IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 289-292, July. 2013.
[18] Yu-Lung Tang, Huei Wang, “Triple-Push Oscillator Approach: Theory and Experiments,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1472-1479, Oct. 2001.
[19] Oscal T.-C. Chen, Robin Ruey-Bin Sheen, “A Power-Efficient Wide-Range Phase-Locked Loop,“IEEE J. Solid-State Circuits, vol. 37, no. 1, pp. 51-62, Jan. 2002.
[20] Chi-Sheng Lin, Ting-Hsu Chien, Chin-Long Wey, Chun-Ming Huang, Ying-Zong Juang, “An Edge Missing Compensator for Fast SettlingWide Locking Range Phase-Locked Loops,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3102-3110, Nov. 2009.
[21] Kwang-Hee Choi, Jung-Bum Shin, Jae-Yoon Sim, Hong-June Park, “An Interpolating Digitally Controlled Oscillator for a Wide-Range All-Digital PLL,” IEEE Trans. Circuit Syst. I, vol. 56, no. 9, pp. 2055-2063, Sept. 2009.
[22] Jinghang Liang, Zhiyin Zhou, Jie Han, Duncan G. Elliott, “A 6.0–13.5 GHz Alias-Locked Loop Frequency Synthesizer in 130 nm CMOS,” IEEE Trans. Circuit Syst. I, vol. 60, no. 1, pp. 108-115, Jan. 2013.
[23] Byoung-Mo Moon, Young-June Park, Deog-Kyoon Jeong, “Monotonic Wide-Range Digitally Controlled Oscillator Compensated for Supply Voltage VariationMonotonic Wide-Range Digitally Controlled Oscillator Compensated for Supply Voltage Variation,” IEEE Trans. Circuit Syst. II, vol. 55, no. 10, pp. 1036-1040, Oct. 2008.
[24] Seong-Young Seo, Jung-Hoon Chun, Young-Hyun Jun, Seok Kim, Kee-Won Kwon, “A Digitally Controlled Oscillator With Wide Frequency Range and Low Supply Sensitivity,” IEEE Trans. Circuit Syst. II, vol. 58, no. 10, pp. 632-636, Oct. 2011.
[25] Mozhgan Mansuri, Chih-Kong Ken Yang, “A Low-Power Adaptive Bandwidth PLL and Clock Buffer With Supply-Noise Compensation,” IEEE J. Solid-State Circuits, vol. 38, no. 11, pp. 1804-1812, Nov. 2003.
[26] Tsuyoshi Ebuchi, Yoshihide Komatsu, Masatomo Miura, Tomoko Chiba, Toru Iwata, Shiro Dosho, Takefumi Yoshikawa, “An Ultra-Wide Range Bi-Directional Transceiver With Adaptive Power Control Using Background Replica VCO Gain Calibration,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 67-68, April. 2011.
[27] Fang-Ren Liao, Shey-Shi Lu, “A Programmable Edge-Combining DLL With a Current-Splitting Charge Pump for Spur Suppression,” IEEE Trans. Circuit Syst. II, vol. 57, no. 12, pp. 946-950, Dec. 2010.
[28] 劉深淵, 楊清淵, 鎖相迴路, 滄海書局, 2006.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2016-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明