博碩士論文 102521019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:34.231.21.105
姓名 游原恩(Yuan-En Yu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 5G行動通訊之濾波器組多載波傳輸設計及其多相位濾波器之可程式化邏輯陣列驗證
(FBMC Transmission System Design and FPGA Evaluation of Polyphase Filter for 5G Mobile System)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器★ 地面數位電視廣播基頻接收器之載波同步設計
★ 適用於通訊系統之參數化數位訊號處理器核心★ 以正交分頻多工系統之同步的高效能內插法技術
★ 正交分頻多工通訊中之盲目頻域等化器★ 兆元位元率之平行化可適性決策回饋等化器設計與實作
★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design
★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計★ 低複雜度與高速多速率多階有限脈衝響應數位濾波器設計技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 正交分頻多工器主要是利用所有的子載波正交特性進行調變,而多載波濾波器組(Filter Bank Multicarrier, FBMC)只需要維持和相鄰子載波之間的正交特性即可。因此,為了保持多載波濾波器組系統正交特性和提高頻寬使用率,將會使用偏移正交振幅調變(Offset Quadrature Amplitude Modulation, OQAM)。有鑒於採樣濾波器的良好振幅響應和微小的旁瓣干擾,本論文將使用頻率採樣濾波器。將偏移正交振幅調變和頻率採樣濾波器組結合我們將不再需要使用循環字首進而可以得到更好的頻寬使用率。
偏移正交振幅調變(Offset Quadrature Amplitude Modulation, OQAM)會將輸入的正交振幅調變(Quadrature Amplitude Modulation, QAM)做實部和虛部分離,形成兩個新符元。分離過程中做2倍升採樣讓兩個符元錯開,之後在一個符元週期內分別以前半週期和後半週期完成傳輸。
合成濾波器組(Synthesis filter bank)和分析濾波器組(Analysis filter bank)重點在於所使用的濾波器,因為所有濾波器組都是原型濾波器(prototype filter)的平移。本論文使用頻率採樣濾波器做為原型濾波器的設計,重疊因子(overlap factor)選擇為4使得原型濾波器的長度為反離散傅立葉轉換 (Inverse Discrete Fourier Transform, IDFT)、離散傅立葉轉換 ( Discrete Fourier Transform, DFT)的4倍。論文裡使用1024點IDFT,長度為4*1024的原型濾波器做為設計規格,為了降低運算複雜度和維持IDFT/DFT大小,這裡使用多相網路完成原型濾波器的設計。
摘要(英) In OFDM, orthogonality must be ensured for all subchannels, while FBMC only requires orthogonality with adjacent subchannels. In order to fully exploit channel bandwidth, modulations in the subchannels must adapt to the neighbor orthogonality constraint, so Offset Quadrature Amplitude Modulation (OQAM) is used for this purpose. Frequency selective filter is accomplished by using longer and spectrally well-shaped prototype filters, and because of frequency selective filter, the sidelobe levels are lower comparing to OFDM. Combination of filter banks and OQAM modulation result in no need for guard time or cyclic prefix like OFDM, leading to higher bandwidth efficiency. In general, this technique is called Filter Bank Multicarrier (FBMC) technique.
Offset Quadrature Amplitude Modulation (OQAM) is a complex-to-real conversion, where real and imaginary part of complex-valued symbol is separated to form two new symbols. Complex-to-real conversion increases the sampling rate by a factor of 2 which causes the two new symbol to stagger. The two new symbols will be transmitted separately in one symbol period.
Frequency selective filter is a key element in complex modulated filter banks, because all synthesis and analysis filters are frequency shifted version of the prototype filter. Here we set the overlap factor of the prototype filter as 4, leading to filter length 4 times longer than DFT/IDFT. An IDFT of size 1024 is used, which leads to a 4*1024 filter length. In order to remain the size of DFT/IDFT and reduce computational complexity the polyphase network is used.
關鍵字(中) ★ 濾波器組
★ 多相位濾波器
關鍵字(英) ★ FBMC
★ Polyphase Filter
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 2
第二章 濾波器組多載波介紹 3
2.1 正交分頻多工調變介紹 4
2.1.1 循環字首 5
2.1.2 正交分頻多工器電路架構 6
2.2 濾波器組多載波傳輸多工器介紹 9
2.2.1 偏移正交振幅調變(OQAM) 10
2.2.2 合成濾波器組與分析濾波器組 12
第三章 原型濾波器設計 15
3.1 頻率採樣濾波器 15
3.2 多相位濾波器推導 19
3.2.1 FBMC與OFDM比較 26
第四章 濾波器組多載波電路架構 27
4.1 濾波器多載波時間頻率響應 27
4.2 多相位濾波器與快速傅立葉轉換完整電路架構 37
第五章 多相位濾波器電路設計 40
5.1 傳送端電路設計 41
5.2 接收端電路設計 44
第六章 模擬結果與電路比較 47
6.1 定點數分析 47
6.2 模擬結果驗證 48
6.3 可程式化邏輯陣列驗證 50
第七章 結論與未來展望 53
參考文獻 54
參考文獻 [1] D. Matiæ, “OFDM as a possible modulation technique for multimedia applications in the range of mm waves,” TUD-TVS, Oct. 1998J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightw. Technol., vol. 25, no. 1, pp. 131–138, Jan. 2008.
[2] A.Peled and A. Ruiz, “Frequency domain data transmission using reduced computational complexity algorithms,” in Proc. IEEE International Conference on ICASSP, vol. 5, April, 1980, pp. 964-967.
[3] FBMC-Primer_06-2010. http://www.ict-phydyas.org
[4] Viholainen, A., Bellanger, M., and Huchard M. PHYDYAS project, deliverable D5.1: Prototype filter and structure optimization. http://www.ict-phydyas.org
[5] P. P. Vaidyanathan, Multirate Systems And Filter Banks. 1993, Prentice-Hall
[6] K.W. Martin, “Small Side-Lobe Filter Design for Data Communication Applications,” IEEE Transactions on Circuifs and Systems-II, vol. 45, no. 8, pp.1155-1161, Aug. 1998
[7] S. Mirabbasi, and K. Martin, “Oversampled Complex-Modulated Transmultiplexer Filters with Simplified Design and Superior Stopbands,” IEEE Trans. Circuits Syst. II, vol. 50, No. 8, pp. 456-469, Aug. 2003.
[8] Boroujeny, B.F.. OFDM versus fillter bank multicarrier. Signal Processing Magazine, IEEE, 28(3):92_112, May 2011.
[9] Tobias Hidalgo Stitz, “Filter Bank Techniques for the Physical Layer in Wireless Communications”, Tampere University of Technology, 2010
[10] Viholainen, A., Bellanger, M., and Huchard M. PHYDYAS project, deliverable D7.1: Compatibility of OFDM and FBMC systems and reconfigurability of terminals. http://www.ict-phydyas.org
[11] Viholainen, A., Bellanger, M., and Huchard M. PHYDYAS project, deliverable D8.1: Application of the FBMC physical layer in a cognitive radio scenario. http://www.ict-phydyas.org
[12] P. Siohan, C. Siclet, and N. Lacaille, "Analysis and design of OFDM/OQAM systems based on filterhank theory," IEEE Transactions on Signal Processing, vol. 50, pp. 1170-1 182, May 2002.
[13] A. Viholainen, T. Hidalgo S., 1. Alhava, T. halainen, M Renfors, “Complex modulated critically sampled filter banks based cosine and sine modulation: IEEE International Symposium an Clrcuiu and Systems, ISCAS 2002, Vol. 1, pp 833 -836,2002
[14] H. S. Malvar, “Extended lapped transform: properties, application, and fast algoithms”. IEEE Trammion on Sfpdprmessing. Vo1.40, No. 11, November 1992
[15] T. Karp and N. J. Fliege, “Modified DFT filter banks with perfect reconstruction,” IEEE Trans. Circuits and Syst. II, vol. 46, pp.1404- 1414, Nov. 1999.
[16] Henrique S. Malvar, Signal Processing with Lapped Transforms, Artech House, Inc., Norwood, MA, USA, 1992.
[17] T. A. Ramstad and J. P. Tanem. “Cosine-modulated analysissynthesis filter bank with critical sampling and perfect reconstruction,” Pm. IEEE ICASSP-9I. Toronto, Canada, May 1991, pp. 1789-1792.
[18] G. Cherubini, E. Eleftheriou, S. Ölçer, J. Cioffi, “Filter bank modulation techniques for very high-speed digital subscriber lines”, IEEE Commun. Magazine, pp. 98-104, May 2000.
[19] B. Farhang-Boroujeny and C. H. Yuen, “Cosine modulated and offset QAM filter bank multicarrier techniques: A continuous-time prospect,” EURASIP J Appl Signal Process. (Special Issue on Filter Banks for Next Generation Multicarrier Wireless Communications), 2010, 10.1155/2010/165654, Article ID 165654, 16 pp.

[20] P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1170–1183, May 2002.
[21] P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM-OQAM systems based on filterbank theory,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1170–1183, May 2002
[22] A. Viholainen, T. Ihalainen, T. H. Stitz, M. Renfors, and M. Bellanger, “Prototype filter design for filter bank based multicarrier transmission,” in Proc. 17th Eur. Signal Process. Conf., Glasgow, Scotland, Aug. 24–28, 2009, pp. 1359–1363
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2016-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明