博碩士論文 102521032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.230.173.249
姓名 劉昱霆(Yu-Ting Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 塊材、薄膜與奈米線之熱導係數量測方法探討
(Methods of Thermal Conductivity Measurement for Bulk、Thin Film and Nanowire)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器
★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究
★ P型金屬氧化物薄膜的製備應用於軟性電子★ 金屬氧化物製備應用於軟性電子元件
★ 超導材料釔鋇銅氧化物熱電特性量測分析★ 鎂矽錫合金熱電特性研究及應用
★ 矽基熱電模組開發及特性研究★ P型金屬氧化物與硫化物之研究
★ 物聯網之熱感測器應用★ P型金屬氧化物與硫化物合金薄膜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來熱電相關研究因半導體製程技術及奈米材料發展而突破瓶頸,使ZT優值更加提升,讓熱電研究受到關注。不只在塊材方面,在薄膜與奈米線的研究上也越來越多,但由於目前現有機台僅限於量測塊材熱導係數,在薄膜、奈米線上需要使用有別於傳統塊材的方法量測。因此本篇提供了使用雷射閃光法(Laser Flash Method)量測塊材、薄膜使用3 電性加熱法量測、奈米線則是懸空架構電性加熱量測方法的介紹。從原理、量測建立以及量測正確性著手,最後驗證了ZnO塊材量測結果的正確性、PECVD成長的200 nm SiO2薄膜室溫量測為0.9(W/mK),符合理論值以及2 μm FeSi2薄膜300K~500K變溫量測結果為5.8~8.1(W/mK)。
摘要(英) In recent years, studies of thermoelectric have broken through the bottleneck due to the development of semiconductor manufacturing technology and the understanding of nano-scale materials. ZT value has been improved not only for bulks, but also for thin-film and nano-wires. But the current machines are limited to measure thermal conductivity for bulk. The measurements for thin-film and nanowire are different from the conventional one. In this thesis, we studied the laser flash method to measure the thermal conductivity of bulk, the 3-Omega method for thin-film and introduced the electrically heating measurement with a floating structure for nanowire. We established the measurement and verified the correction of the results. The measurement results of ZnO bulk were comparable with previous reports, while 200 nm thick SiO2 thin film grown by PECVD in room temperature was measured ~ 0.9 (W/mK), corresponding to the theoretical value. The measurement result of 2 μm FeSi2 thin film from 300K to 500K was 5.8 ~ 8.1 (W/mK).
關鍵字(中) ★ 熱導係數
★ 塊材
★ 薄膜
★ 3 omega
關鍵字(英) ★ Thermal conductivity
★ Bulk
★ Thin film
★ 3 omega
論文目次 摘要………………………………………….…………………...…..….…..……….Ⅰ
Abstract…………………………………………………….…….…………..………Ⅱ
目錄………………………………………………………….…..………….….…….Ⅲ
圖表目錄………………………………………………………..………….….……..Ⅴ
第一章 研究動機………………………………………………….…..………..……1
1-1 熱電簡介…………………………………………………..………..…..1
1-2 研究動機……………………………………………….….….…..…….2
第二章 熱導係數說明與理論計算……………………………………………….…4
2-1 雷射閃光法(Laser Flash Method)與示差掃描量熱儀(DSC)…….....…4
2-1-1雷射閃光法(Laser Flash Method)…………………………………….4
2-1-2示差掃描量熱儀(DSC)…………………………………………...…..5
2-2電性加熱感溫量測塊材熱導係數數學推導…………………………..6
2-3 3 omega method………………………………………………………..……9
2-4懸浮結構量測奈米線數學推導………………………………...….…..13
第三章 樣品製備與實驗設備建立…………………………………………....……17
3-1 塊材樣品製備………………………………………………….………17
3-2 LFA量測流程……………………………………………………..……18
3-3 DSC量測流程…………………………………………………….……20
3-4 3 omega量測設備建立…………………..…………………………….……22
3-5 3 omega試片製備………………………………………………….…..……26
3-6 3 omega量測流程………………………………………………..….………30
3-6-1 常溫量測…………………………………………………………….30
3-6-2 變溫量測………………………………………….…………………32
第四章 量測結果與數據分析……………………………….…….………………..34
4-1 ZnO塊材量測結果…………………………………………………..34
4-2 3 omega method 量測分析與結果…………………………….…………..38
4-2-1 3 omega 量測系統的正確性……………………………………..………..38
4-2-2 3 omega 量測系統的穩定性……………………………………..………..40
4-2-3 FeSi2量測結果與分析………………………………….………….44
第五章 結論與未來展望……………………………………………………………47
5-1 結論…………………………………………………………………….47
5-2 未來展望…………………………………………….….……….……..48
參考文獻……………………………………………………………...…...…………49
參考文獻 [1] C. BOBEAM, “The study and modeling of a thermoelectric generator module,” IEEE, Advanced Topics in Electrical Engineering (ATEE), p.1-4, 2013.
[2] S. Maharaj, P. Govender, “Waste energy harvesting with a thermoelectric generator” IEEE, Domestic Use of Energy Conference (DUE),p1-6, 2013.
[3] Y. M. Tan et al., “Fabrication of thermoelectric cooler for device integration,” IEEE, Electronic Packaging Technology Conference,Vol 2, 2005.
[4] Anthony M. Pettes et al., “Optimized thermoelectric refrigeration in the
presence of thermal boundary resistance,” IEEE, ASME, Vol.2, p.221-228, 2007.
[5] D. Koester et al., “Embedded thermoelectric coolers for semiconductor hot spot cooling,” IEEE, Thermal and Thermomechanical Phenomena in Electronics Systems, ITHERM ′06, p.491-496, 2006.
[6] A. Shakouri et al., “On-chip solid-state cooling for integrated circuits using thin-film micro refrigerators,” IEEE, Vol.28, No.1, p.65-69, 2005.
[7] Heng-Chieh, Chien, “Novel methods development for measuring thermal
conductivity of micro/nanoscale thin-film,” doctoral dissertation, NTHU, 2010.
[8]D.G. Cahill, “Thermal conductivity measurement from 30 to750 K: the 3 omega method, ”Rev. Sci. Instrum., Vol 61, p.802-808, 1990.
[9]S. M. Lee and D.G. Cahill, “Heat Transport in Thin Film Dielectric Films,”J.Appl. Phys. , Vol.81, p.2590-2595, 1997.
[10] Yung-Chih Liu, “Temperature-dependent effect of thermal conductivity measurement by using 3ω method,” master dissertation, NTHU, 2004.
[11] T. Borca-Tasciuc et al., “Data reduction in 3 method for thin-film thermal conductivity determination,” Rev. Sci. Instrum., Vol. 72,No. 4, p.2139-2147, 2001.
[12] Allon I. Hochbaum et al., “Enhanced thermoelectric performance of rough
silicon nanowires,” nature, Vol 451, p.163-167, 2008.
[13] Julio A. Martinez et al., “Enhanced thermoelectric figure of merit in SiGe alloy nanowires byboundary and hole-phonon scattering,” J. Appl. Phys. 110, 2011.
[14] Cheng-Lun Hsin et al., “Phase transformation and thermoelectric properties of bismuth-telluride nanowires,” Nanoscale, p.4669–4672, 2013.
[15] Li Shi et al., “Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device,” ASME, Vol. 125, p.881-888, 2003.
[16] David G. Cahill et al., “Thermal conductivity of amorphous solids above the plateau,” Phys. Rev. B 35, 4067,1987
[17] Brandon W. Olson et al., “practical extension of the 3 method to multilayer structures,” Rev. Sci. Instrum. 76, 2005.
[18] K.F. Cai et al., “Preparation and thermoelectric properties of Al-doped ZnO ceramics,” Materials Science and Engineering B104, p.45–48, 2003.
[19] S.W. Kim et al., “High temperature thermoelectric properties of p- and n-type b-FeSi2 with some dopants,” Intermetallics 11, p.399–405, 2003.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2015-10-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明