博碩士論文 102521034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:3.137.210.110
姓名 江承庭(Chen-ting Chiang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鋁鎵/氮化鎵高電子遷移率場效電晶體之表面氮化鋁氧化研究
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要針對在高阻值矽(111)基板上進行氮化鋁/氮化鋁鎵/氮化鋁/氮化鎵電晶體製作與研究,希望藉由表面高溫氧化技術,使表面形成氮氧化鋁並與隨後沉積之閘極絕緣層形成更好的介面及較佳的絕緣層品質。
為了探討高溫氧化製程對介面缺陷密度以及閘極絕緣層的影響,本論文採用快速熱退火機台在環境溫度900 °C氧氣流量20 sccm下分別進行2、3.5、5 min不同時間的高溫氧化製程,接續沉積氧化鋁作為元件的閘極絕緣層,並進行450 ℃閘極絕緣層之熱退火,製作出金氧半電容。元件閘極漏電流,在逆偏狀態下最低可達10-6 A/cm2相較於未經高溫氧化製程的金氧半電容降低約2個數量級,藉由電容電壓量測,可觀察到高溫氧化製程能改善不同頻率間產生的散色現象,反應出氧化層與半導體間的介面缺陷密度獲得改善,約在1012~1013 cm-2eV-1。
更進一步的將此高溫氧化製程技術應用至金氧半場效電晶體的製作上,並進行特性比較,發現高溫氧化處理能夠降低電晶體的閘極漏電流,以及改善介面缺陷密度,但是卻可能造成緩衝層及元件側壁的漏電流提升。
本實驗同時對金氧半場效電晶體進行動態導通電阻量測分析,比較關閉狀態下不同的偏壓條件,結果發現在電晶體關閉狀態而汲極施加偏壓小於30 V時,相較於未進行高溫氧化處理的金氧半場效電晶體測得之動態電阻/穩態導通電阻比值是有改善的,但隨著汲極偏壓大於30 V時,動態特性劣化的情況較未進行高溫氧化處理的金氧半場效電晶體更為嚴重,此結果顯示元件的動態導通電阻不僅受到介面缺陷密度的影響,高電場作用下容易引發出緩衝層及磊晶層當中缺陷,進而影響元件的切換特性。
摘要(英) This study focuses on the fabrication and characterization of AlN/AlGaN/AlN/GaN HEMTs on high-resistivity Si(111)substrate. The thermal oxidation is proposed before gate dielectric deposition to achieve the high quality gate dielectric and lower interface state density.
To discuss the impact of the high temperature oxidation process, we fabricated the metal-oxide-semiconductor capacitor (MOS capacitor) with 10 nm Al2O3 gate dielectrics with thermal oxidation process. The thermal oxidation process was in O2 ambient at 900 C for 2、3.5、5 minutes before the gate dielectrics deposition, followed by post-deposition annealing(in N2 ambient at 450 C). When MOS capacitors were reverse-biased, the MOS capacitor with thermal oxidation showed the lowest gate leakage current about 10-6 A/cm2, which is lower than the MOS capacitor without thermal oxidation by twofold. From capacitance–voltage measurement results, device with thermal oxidation process shows the lower dispersion between different measurement frequencies. The MOS capacitor with thermal oxidation process show the improvement on the interface state density between gate insulator and semiconductor. The interface state density is reduced to about 1012~1013 cm-2eV-1.
Comparing the influence about thermal oxidation process on MOS-HEMT. Devices with thermal oxidation process show reduction in the gate leakage current, and the interface state density. However, device with thermal oxidation process showed the lower buffer breakdown voltage.
In addition, dynamic resistances of the devices were analyzed with different kinds of quiescent bias. When drain quiescent bias is below 30V, the device with the thermal oxidation shows lower dynamic on-resistance to steady-state on-resistance ratio. When drain quiescent bias is High than 30 V, the device with the thermal oxidation shows the higher dynamic on-resistance to steady-state on-resistance ratio. The experimental results showed that the dynamic resistance is not only dominated by the interface density, but also affected by the buffer defects at high electric field.

關鍵字(中) ★ 氮化鋁鎵/氮化鎵
★ 高電子遷移率場效電晶體
關鍵字(英)
論文目次 中文摘要 I
Abstract II
致謝 III
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1前言 1
1.2氮化鎵高電子遷移率場效電晶體之發展與相關表面製程研究 3
1.3本論文研究動機與目的 9
1.4論文架構 9
第二章 氮化鋁鎵/氮化鎵之磊晶結構設計及材料特性分析 11
2.1 前言 11
2.2 氮化鋁鎵/氮化鎵於矽基板之磊晶結構 11
2.2.1緩衝層X光繞射儀量測分析 14
2.2.2 霍爾量測與分析 15
2.2.3 XPS電子能譜儀量測分析 16
第三章 氮化鋁鎵/氮化鎵金氧半電容與電晶體特性分析與比較 19
3.1前言 19
3.2氮化鋁鎵/氮化鎵金氧半電容製作流程 19
3.3氮化鋁鎵/氮化鎵金氧半電容特性分析 21
3.3.1閘極電容基本量測介紹 22
3.3.2電容-電壓特性曲線 24
3.3.3電容-電壓曲線萃取介面缺陷密度 25
3.4 未經高溫氧化處理之氮化鋁鎵/氮化鎵金氧半場效電晶體製作與分析 30
3.4.1未經高溫氧化處理之氮化鋁鎵/氮化鎵金氧半場效電晶體製作流程 30
3.4.2未經高溫氧化處理之氮化鋁鎵/氮化鎵金氧半場效電晶體特性分析 33
3.4.3電容-電壓曲線萃取介面缺陷密度 36
3.5高溫氧化處理之氮化鋁鎵/氮化鎵金氧半場效電晶體製作與分析 37
3.5.1 高溫氧化處理之氮化鋁鎵/氮化鎵金氧半場效電晶體製作流程 38
3.5.2 高溫氧化處理之氮化鋁鎵/氮化鎵金氧半場效電晶體特性分析 41
3.5.3電容-電壓曲線萃取介面缺陷密度 47
3.5.4電容-電壓特性曲線萃取載子濃度及深度關係 49
3.6 結論 50
第四章 氮化鋁鎵/氮化鎵場效電晶體之電流坍塌效應量測分析 51
4.1前言 51
4.2氮化鋁鎵/氮化鎵場效電晶體之電流坍塌效應 51
4.2.1電流坍塌效應簡介 51
4.2.2未經高溫氧化處理與經高溫氧化處理金氧半場效電晶體之電流坍塌效應分析與比較 53
4.3 結論 61
第五章 結論與未來展望 63
參考文獻 65
附錄Ⅰ金氧半電容製作流程 68
附錄Ⅱ金氧半場效電晶體製作流程 71
參考文獻 [1] Guerra and J. Zhang, “ GaN Power Devices for Micro Inverters” Power Electronic Europe, issue 4, June 2010.
[2] L. F. Eastman and U. K. Mishra, “The toughest transistor yet GaN transistors,” IEEE Spectr, vol. 3, May 2002.
[3] Wataru Saito, Masahiko Kuraguchi, Yoshiharu Takada, Kunio Tsuda, Ichiro Omura, and Tsuneo Ogura, “Influence of Surface Defect Charge at AlGaN–GaN-HEMT Upon Schottky Gate Leakage Current and Breakdown Voltage,” IEEE Transactions Electron Devices, vol. 52, no. 2, pp. 159-164, Feb. 2005.
[4] Vetury, R., Zhang, N.Q. , Keller, Stacia , Mishra, Umesh K ,“The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Transactions Electron Devices, vol. 48, no. 3, pp. 560-566, Mar. 2001.
[5] Yuanzheng Yue, Yue Hao, Jincheng Zhang, Jinyu Ni, Wei Mao, Qian Feng and Linjie Liu, “AlGaN/GaN MOS-HEMT With HfO2 Dielectric and Al2O3 interfacial passivation layer Grown by atomic layer deposition,” IEEE Electron Device Lett., vol. 29, no 8, pp. 838-840, Aug. 2008.
[6] Liang Pang, Yaguang Lian, Dong-Seok Kim, Jung-Hee Lee and Kyekyoon Kim, “AlGaN/GaN MOSHEMT with High-Quality Gate-SiO2 Achieved by Room-Temperature Radio Frequency Magnetron Sputtering,” IEEE Trans. Electron Devices., vol. 59, no. 10, pp. 2650-2655, Oct. 2012.
[7] T. Lalinsky´, G. Vanko, M. Vallo, E. Dobrocˇka, I. Ry´ger, and A. Vincze, “AlGaN/GaN high electron mobility transistors with nickel oxide based gates formed by high temperature oxidation,” Appl. Phys. Lett., 100, 092105, Feb. 2012.
[8] Han-Yin Liu, Bo-Yi Chou, Wei-Chou Hsu, Ching-Sung Lee, Jinn-Kong Sheu, and Chiu-Sheng Ho, “Enhanced AlGaN/GaN MOS-HEMT Performance by Using Hydroden Peroxide Oxidation Technique,” IEEE Trans. Electron Devices., vol. 60, no. 1, pp. 213-219, Jan. 2013.
[9] F. Medjdoub, M. Van Hove, K. Cheng, D. Marcon, M. Leys, and S. Decoutere, “Novel E-Mode GaN-on-Si MOSHEMT using a Selective Thermal Oxidation,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 948-950, Sep. 2010.
[10] Y. Hori, Z. Yatabe, and T. Hashizume, “Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors,” Appl. Phys. Lett., 114, 244503, Dec. 2013.
[11] Yi-Che Lee, Tsung-Ting Kao, Joseph J. Merola, and Shyh-Chiang Shen, “A Remote-Oxygen-Plasma Surface Treatment Technique for lll-Nitride Heterojunction Field-Effect Transistors,” IEEE Trans. Electron Devices., vol. 61, no. 2, pp. 493-497, Feb. 2014.
[12] Maojun Wang, Ye Wang, Chuan Zhang, Bing Xie, Cheng P. Wen, Jinyan Wang, Yilong Hao, Wengang Wu, and Kevin J. Chen, “900 V/1.6 mΩ · cm2 Normally Off Al2O3/GaN MOSFET on Silicon Substrate,” IEEE Transactions Electron Devices, vol. 61, no. 6 pp. 2035 - 2040, June. 2014.
[13] Shenghou Liu, Shu Yang, Zhikai Tang, Qimeng Jiang, Cheng Liu, Maojun Wang, Bo Shen, and Kevin J. Chen, “Interface/border trap characterization of Al2O3/AlN/GaN metal-oxide-semiconductor structures with an AlN interfacial layer,” IEEE Applied Physics Letters, vol. 106, no. 5, 051605, Feb. 2015.
[14] Naohisa Harada, Yujin Hori, Naoki Azumaishi, Kota Ohi, and Tamotsu Hashizume, “Formation of Recessed-Oxide Gate for Normally-Off AlGaN/GaN High Electron Mobility Transistors Using Selective Electrochemical Oxidation,” Appl. Phys Express, 4, (2011) 021002.
[15] Dong Seup Lee, Jinwook W. Chung, Han Wang, Xiang Gao, Shiping Guo, Patrick Fay, and Tomás Palacios, “245-GHz InAlN/GaN HEMTs With Oxygen Plasma Treatment,” IEEE Electron Device Lett., vol. 32, no. 6, pp. 755-757, June. 2011.
[16] D. Balaz, Current Collapse and Device Degradation in AlGaN/GaN Heterostructure Field Effect Transistors, University of Glasgow, 2010.
[17] Y. C. Kong, Y.D. Zheng, C. H. Zhou, S.L. Gu, R. Zhang, P. han, Y. Shi, R. l. Jiang, “ Two-dimensional electron gas densities in AlGaN/AlN/GaN heterostructures,” Appl. Phys. A 84, 95–98, 2006.
[18] B. Heying, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett., Vol. 68, 643 (1996)
[19] L. C. d. Bvcrist transferred to Commons by Lauro Chieza de Carvalho (Carvalho, X-ray photoelectron spectroscopy, 2009.
[20] Leland Rosenberger, Ronald Baird, Erik McCullen, Gregory Aunerc and Gina Shreve, “XPS analysis of aluminum nitride films deposited by plasma sourcemolecular beam epitaxy”, Surface and Interface Analysis, Vol. 40, 1254–1261, no. 9, 2008.
[21] Chihoko Mizue, Yujin Hori, Marcin Miczek, and Tamotsu Hashizume, “Capacitance–Voltage Characteristics of Al2O3/AlGaN/GaN Structures and State Density Distribution at Al2O3,AlGaN Interface” Jpn. J. Appl. Phys., 50 (2011) 021001.
[22] Sen Huang, Qimeng Jiang, Shu Yang, Zhikai Tang, and Kevin J. Chen, “Mechanism of PEALD-Grown AlN Passivation for AlGaN/GaN HEMTs: Compensation of Interface Traps by Polarization Charges,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 193-195 Feb. 2013.
[23] S. Huang, Q. Jiang, K. Wei, G. Liu, J. Zhang, X. Wang, Y. Zheng, B. Sun, C. Zhao, H. Liu, Z. Jin,X. Liu, H. Wang, S. Liu, Y. Lu, C. Liu, S. Yang, Z. Tang, J. Zhang, Y. Hao, and Kevin J. Chen, “High-Temperature Low-Damage Gate Recess Technique and Ozone-Assisted ALD-grown Al2O3 Gate Dielectric for High-Performance Normally-Off GaN MIS-HEMTs,” Electron Devices Meeting, p. 17.4.1-17.4.4, Dec 2014.
[24] D. Jin and Jesus A. del Alamo, “Mechanisms responsible for dynamic ON-resistance in GaN high-voltage HEMTs,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs., June 2012.
[25] Z. H. Liu, G. I. Ng, S. Arulkumaran, Y. K. T. Maung, K. L. Teo, “Improved two-dimensional electron gas transport characteristics in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor with atomic layer-deposited Al2O3 as gate insulator,” Appl. Phys. Lett., 2009
指導教授 辛裕明(Yue-ming Hsin) 審核日期 2015-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明