博碩士論文 102521043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.143.0.157
姓名 許毅軒(Yi-Xuan Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應變量子井和波長偏移量對超高速(>40Gbit/sec) 850nm光波段的垂直共振腔面射型雷射之高溫和動態 特性的影響
(The Influence of Strained Multiple Quantum Wells and Wavelength Detuning on the Dynamic Performances of Ultra-High Speed (>40 Gbit/sec) 850 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs))
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 下一個世代的光連結(optical interconnect,OI)技術的數據速率(data rate)將會是50Gb/s,為了達到這個目標垂直共振腔面射型雷射 (VCSELs)的3dB頻寬必須達到30GHz以上,而且此元件除了在常溫特性要好之外,且在85℃時的3dB頻寬也不能劣化太多。在論文裡會探討垂直共振腔面射型雷射主動層(active layer)的設計,藉由探討不同的應力量子井設計和波長偏移量對850nm VCSEL的靜態和動態特性有什麼影響。
首先,我們比較GaAs/Al0.3Ga0.7As 和Al0.1In0.15Ga0.75As/Al0.3Ga0.7As兩種不同量子井結構的元件特性,而且此兩種元件都在相同水氧孔徑(5µm)以及相同波長偏移量(17nm)條件下做比較,結果顯示Al0.1In0.15Ga0.75As/Al0.3Ga0.7As量子井的元件3dB頻寬在室溫可以達到24GHz而85℃為 17GHz,另一方面GaAs/Al0.3Ga0.7As量子井的元件3dB頻寬在室溫只能達到20GHz而85℃為10 GHz,所以利用應力量子井可以增加垂直共振腔面射型雷射的3dB頻寬並且改善高溫特性。
為了更進一步增加3dB頻寬,我們利用較多的增益峰值(gain peak wavelength)和共振腔共振波長( etalon wavelength)的波長偏移量(~20nm)。起初這個方法是用在分佈反饋半導體雷射(DFB Laser),但分佈反饋半導體雷射需要藍移的偏移量(blue-shift detuning),藍移的偏移量的定義為共振腔波長<增益峰值波長。
然而VCSEL需要紅移的偏移量(red-shift detuning),這是因為VCSEL有比較大的熱阻,所以當電流增加時,元件熱效應會造成VCSEL有能隙窄化(bandgap narrowing)這個現象。
利用較多的波長偏移量(~20nm)以及不同銦含量的應力量子井,我們發現In0.1Ga0.9As/Al0.3Ga0.7As和Al0.1In0.15Ga0.75As/Al0.3Ga0.7As兩種應力量子井的元件在水氧孔徑較小(3µm)時,3dB頻寬都接近30GHz。但當我們把元件的水氧孔徑做大(8µm)時,我們發現In0.1Ga0.9As/Al0.3Ga0.7As量子井的元件3dB頻寬只能到達20GHz並且需要較大的驅動電流(~17 kA/cm2),而Al0.1In0.15Ga0.75As/Al0.3Ga0.7As量子井的元件只需要較小的驅動電流(~8 kA/cm2)3dB頻寬就可以到達26GHz,而且因為我們把水氧孔徑做大,可以使元件電流密度降低,也因此我們元件的可靠度會提升,這也是目前高可靠度及超高速(>40Gb/s)VCSEL所需要的特性。
摘要(英) To meet the application of next generation optical interconnect (OI) with data rate as high as 50 Gbit/sec, a high-speed vertical-cavity surface-emitting laser (VCSEL) with a 3-dB electrical-to-optical (E-O) bandwidth over 30 GHz and can be operated from room-temperature (RT) to 85℃ is highly desired. In this thesis, the influence of active layer design, which includes wavelength detuning and strained multiple quantum wells (MQWs), on the static/dynamic performances of high-speed 850 nm VCSEL have been investigated in detail. Compared with the reference device with the lattice-matched GaAs/Al0.3Ga0.7As MQWs design, the studied device with a highly strained Al0.1In0.15Ga0.75As/Al0.3Ga0.7As MQWs design exhibits a faster speed performance (23 vs. 20 GHz) and an improved high-temperature performances under the case of same oxide-aperture (~5 µm) and the same wavelength detuning (+15 nm). Furthermore, in order further boost the speed performance of these VCSELs with highly strained active layers design, a strong wavelength detuning (> +20 nm; etalon wavelength > material gain peak wavelength) was adopted in our studied devices. Such positive wavelength detuning design for VCSEL bandwidth enhancement is conflict with that of the typical reported distributed-feedback (DFB) laser, which usually needs a blue-shift detuning for speed enhancement. This is because that the VCESL devices usually have a larger thermal resistance and suffered from more serious device-heating induced bandgap narrowing during operation than those of DFB lasers.
With such a strong detuning design, it is found that both In0.1Ga0.9As/Al0.3Ga0.7As and Al0.1In0.15Ga0.75As/Al0.3Ga0.7As MQWs design can attain nearly 30 GHz O-E bandwidth and (quasi-) single-mode performances with a diameter of oxide-relief apertures less than 5µm. On the other hand, when the oxide-relief aperture reaches ~8µm, the devices with Al0.1In0.15Ga0.75As/Al0.3Ga0.7As well exhibits a much better speed performance (>24 vs. 20 GHz) than that of In0.1Ga0.9As one due to its larger compressive strain in active layers. This thus results in a much lower driving-current density (~8 vs. ~17 kA/cm2) of devices with Al0.1In0.15Ga0.75As well for the same desired high-speed performance (~27 GHz).
By use of these newly demonstrated low-driving current density VCSELs with strong positive wavelength detuning (+ 20 nm), high-speed performance, excellent transmission performance, which includes an extremely low energy-to-data rate ratio (EDR: 228 fJ/bit) and record-low driving-current density (8 kA/cm2; 3.5mA) have been successfully achieved for 41Gbit/sec error-free transmission over 100 meter OM4 multi-mode fiber.
關鍵字(中) ★ 垂直共振腔面射型雷設
★ 光連接
★ 應力量子井
★ 波長偏移量
關鍵字(英) ★ VCSELs
★ Optical interconnect
★ Strained quantum well
★ Detuning wavelength
論文目次 摘 要 i
Abstract iii
致謝 iv
目 錄 v
第一章 序論 1
1-1簡介 1
1-2光連結應用 1
1-3 面射型雷射簡介 6
第二章 理 論 8
2-1 VCSEL的磊晶結構 8
2-2 鋅擴散於DBR 8
2-3 VCSEL的選擇性水氧化理論 16
2-4 水氧層掀離製作 18
2-5 水氧化系統 19
2-6 IR系統 20
2-7 發散角 21
第三章如何提升VCSEL調製速度 24
3-1應力(strained)量子井 24
3-1-1量子井加入應力(strained)原理 24
3-1-2應力量子井可靠度(Reliability)的問題 26
3-1-3量井子需要加入多少應力(strained)? 28
3-1-4如何實現量子井摻雜15%銦(Indium)? 29
3-2波長偏移量(detuning wavelength) 30
3-2-1藍移偏移量(blue-shift detuning) 30
3-2-2紅移偏移量(red-shift detuning) 31
第四章 實 驗 33
4-1 鋅擴散製程 33
4-2 水氣氧化 35
4-3 製作電極(P-metal 和N-metal) 39
4-4 金屬回火(Annealing)和平坦化 40
4-5 把每個元件絕緣(Isolation) 40
4-6 開洞(Via) 41
第五章 量測結果與討論 43
5-1量測系統 43
5-1-1.電流對電壓(I-V)的量測 43
5-1-2.光功率對電流(L-I)之量測 43
5-1-3.遠場(Far field)之量測系統 44
5-1-4.近場(Near field)投影之量測系統 44
5-1-5.頻譜(Spectrum) 之量測系統 45
5-1-6.頻寬(Bandwidth)之量測系統 45
5-1-7.眼圖(Eye pattern)之量測系統 46
5-2所有元件實驗條件 48
5-3比較有應力和沒應力量子井的元件特性 49
5-3-1元件結構圖 49
5-3-2 L-I-V特性曲線圖 50
5-3-4光頻譜(Optical spectra)比較 52
5-3-5頻寬(bandwidth) 53
5-3-6大訊號眼圖(eye pattern) 54
5-4銦(Indium)含量(15% 和10%)對VCSEL特性影響 56
5-4-1元件設計及實驗條件 56
5-4-2L-I-V特性曲線圖 56
5-4-3光頻譜(Optical spectra)的比較 58
5-4-4頻寬(bandwidth)的比較 58
5-4-5大訊號眼圖(eye pattern) 61
5-5波長偏移量對VCSEL特性影響 64
5-5-1元件設計的條件 64
5-5-2光頻譜(Optical spectra) 64
5-5-3頻寬(bandwidth)的比較 65
5-6共振腔共振波長(etalon wavelength)在~850nm的元件 66
5-6-1元件設計及實驗條件 66
5-6-2 L-I-V特性曲線圖 66
5-6-3光頻譜(Optical spectra) 67
5-6-4頻寬(bandwidth) 67
5-6-5大訊號眼圖(eye pattern) 68
5-7 臨界電流(threshold current,Ith)和溫度變化曲線 69
第六章 量測結果與討論 71
Reference 72
參考文獻 [1] N. Savage, “Linking with Light,” IEEE Spectrum, vol. 39, issue 8, Aug., 2002.
[2] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64Gb/s Transmission over 57m MMF using an NRZ Modulated 850nm VCSEL,” Proc. OFC 2014, San Francisco, CA, USA , pp. Th3C. 2, March, 2014.
[3] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ Modulated 850-nm VCSEL-Based Optical Link,” IEEE Photon. Technol. Lett., vol. 27, no. 6, pp. 577-580, March, 2015.
[4] S. Kandou, “Progress and Challenges for Next Generation 400G Electrical Links,” OIF Workshop, San Jose, CA, USA, February, 2014.
[5] S. Nakagawa, D. Kuchta, C. Schow, R John, A .Larry .Coldren,Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC, San Diego, CA, pp. OThS3, Feb., 2008.
[6] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang et al., “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fiber,” Electron. Lett., vol. 26, no. 19, pp. 1628-1629, Sep., 1990.
[7] Y. J. Yang, T. G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting laser,” Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1418, pp. 414-421, Nov., 1991.
[8] Y. J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang, “Low threshold operation of a GaAs single quantum well mushroom structure surface emitting laser,” Appl. Phys. Lett., vol. 58, no. 16, pp. 1780-1782, Apr., 1991.
[9] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart “Self-interstitial mechanism for Zn diffusion-induced disordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures,” J. Appl. Phys., vol. 73, pp. 3769-3781, April, 1993.
[10] J. A. Van Vechten, “Intermixing of an AlAs-GaAs superlattice by Zn Diffusion ,” J. Appl. Phys. vol. 55, no. 10, pp.7082-7084, Oct., 1984.
[11] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion, ” Appl. Phys. Lett., vol. 38, no. 10, pp. 776-778 , May, 1981.
[12] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlattice,” Semicond. Sci. Tech., no. 4, pp. 841-846, 1989.
[13]陳志誠,“穩態單橫模和穩定極化的面射型雷射,” 國立台灣大學電機工程 學系博士論文, 民國90年.
[14] R. G. Hunsperger, “Integrated Optics: Theory and Technology”, IEEE J. Quantum Electron., vol. QE-19., no. 4, April, 1983.
[15] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, “Diffusion of zinc into Ga1-xAlx As ,” Appl. Phys. Lett., vol 47, no. 11, pp.1193-1195, 1985.
[16] C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison, “Transverse mode characteristics of vertical-cavity surface-emitting lasers” Appl. Phys. Lett., vol. 57, pp.218-220, 1990.
[17] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys., vol. 36, no.12, pp. 3770-3778, Dec., 1965.
[18] K. Nakajima, “Calculation of stresses in InxGa1−xAs/InP strained multilayer heterostructures,” J. Appl. Phys., vol. 72, Issue 11, pp. 5213-5219, Dec., 1992.
[19] K. D. Choquette, K. M. Geib, I. H. Carol, Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE J. Sel. Top. Quant. Electron, vol. 3, no. 3, pp. 916-926, June, 1997.
[20] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and R. Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers,” IEEE Photon. Tech. Lett., vol. 7, no. 11, pp.1237-1239, Nov., 1995.
[21] N. Hplonyak, Jr., and J. M. Dallesasse, “Dependence on doping type (p/n) of the water vapor oxidation of high‐gap AlxGa1-xAs ,” Appl. Phys. Lett, vol. 60, no. 25, pp. 3165-3167, Jun., 1992.
[22] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., vol. 69, pp.1935-1937, June,1996.
[23] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol. 8, no.6 pp.740-742, June, 1996.
[24] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,” Appl. Phys. Lett., vol. 66, pp.1723-1725, Jan., 1995.
[25] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib, “Cavity characteristics of selectively oxidized vertical-cavity lasers,” Appl. Phys. Lett., vol. 66, pp.3413-3415, 1995.
[26] W. W. Chow, K. D. Choquette, H. Mary. Crawford, L. Lear. Kevin, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., vol. 33, pp. 1810-1824, 1997.
[27] 江嘉偉“應用在光連結高可靠度高速(>25Gbit/sec)850光波段的垂直共振腔雷射” 國立中央大學電機工程學系碩士論文, 民國103年.
[28] M. Grabherr, S. Intemann, S. Wabra, P. Gerlach, M. Riedl, R. King “25 Gbps and beyond: VCSEL development at Philips,” Proc. SPIE, vol. 8639, pp. 86390J-2, February, 2013.
[29] J. Guenter, B. Hawkins, R. Hawthorne, G. Landry, “Reliability of VCSELs for >25 Gb/s,” Proc. OFC 2014, San Francisco, CA, USA, pp. M3G.2, March, 2014.
[30] S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, and A. Haglund, A. Larsson, and A. Joel, “Active Region Design for High-Speed 850-nm VCSELs,” IEEE J. Quantum Electron., vol. 46, pp. 506-512, April, 2010.
[31] H. Nishimoto, M. Yamaguchi, I. Mito, and K. Kobayashi “High-Frequency Response for DFB LD due to a Wavelength Detuning Effect,” IEEE/OSA Journal of Lightwave Technology, vol. LT-5, no. 10, pp. 1399-1402 , Oct., 1987.
[32] H. L. Member, C. Blaauw, and Toshihiko Makino, Member, “Single-Mode Operation Over a Wide Temperature Range in 1.3 pm InGaAsP/InP Distributed Feedback Lasers,” Journal of Lightwave Technology, vol. 14, no. 5, May, 1996.
[33] M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 312-320, March/April, 2004.
[34] K. Doi , T. Shindo, M. Futami, T. Amemiya, N. Nishiyamal, and S. Arail, “Thermal Analysis of Self-heating Effect in GaInAsP/InP Membrane DFB Laser on Si Substrate,” IEEE Photonic Society Meeting 2012, San Francisco, CA, USA, Sep., 2012.
[35] Hui Li, Philip Wolf, Philip Moser, Student Member, Gunter Larisch, Alex Mutig, A. Lott, Senior Member, and Dieter H. Bimberg, “Impact of the Quantum Well Gain-to-Cavity Etalon Wavelength Offset on the High Temperature Performance of High Bit Rate 980-nm VCSELs,” IEEE J. Quantum, Electron., vol. 50, no. 8, pp. 613-621, August, 2014.
[36] J.-W. Shi, C. -C. Chen, Y .-S. Wu , S.- H. Guol, Chihping Kuo, and Ying-Jay Yang,“High-Power and High-Speed Zn-Diffusion Single Fundamental -Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photonic. Tech .Lett., vol. 20, no. 13, pp. 1121-1123, 2008.
[37] W. W. Chow, K. D. Choquette, H. Mary. Crawford, L. Lear. Kevin, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., vol. 33, pp. 1810-1824, 1997.
[38] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, High speed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, 2007.
[39] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50 Gb/s NRZ Modulated 850 nm VCSEL Transmitter Operating Error Free to 90 °C,” Journal of Lightwave Technology., vol. 33, no. 4, Feb., 2014.
指導教授 許晉瑋(Jin-Wei Hsu) 審核日期 2015-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明