博碩士論文 102521065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:54.172.234.236
姓名 梁守鈞(Shou-jyun Liang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 即時人臉偵測、姿態辨識與追蹤系統實現於複雜環境
(Real Time Human Face Detection, Posture Recognition and Tracking System Realized in Complex Environment)
相關論文
★ 影像處理運用於家庭防盜保全之研究★ 適用區域範圍之指紋辨識系統設計與實現
★ 頭部姿勢辨識應用於游標與機器人之控制★ 應用快速擴展隨機樹和人工魚群演算法及危險度於路徑規劃
★ 智慧型機器人定位與控制之研究★ 基於人工蜂群演算法之物件追蹤研究
★ 基於環型對稱賈柏濾波器及SVM之人臉識別系統★ 改良凝聚式階層演算法及改良色彩空間影像技術於無線監控自走車之路徑追蹤
★ 模糊類神經網路於六足機器人沿牆控制與步態動作及姿態平衡之應用★ 四軸飛行器之偵測應用及其無線充電系統之探討
★ 結合白區塊視網膜皮層理論與改良暗通道先驗之單張影像除霧★ 基於深度神經網路的手勢辨識研究
★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統★ 模糊控制與灰色預測應用於隧道型機械手臂之分析
★ 模糊滑動模態控制器之設計及應用於非線性系統★ 階層式模糊控制及其在倒三角體系統之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文旨在實現人臉偵測、辨識人臉姿態與追蹤於即時動態影像,透過攝影機擷取影像,首先利用閥值把膚色與影像分離,經過形態學處理,把不必要的雜訊給移除,最後使用種子區域生長法,標記每個膚色的區塊,使用人臉判定法,假如膚色區塊不是人臉的話就被捨去掉。
當人臉被偵測出來,使用小波圖像分割法,抓取低頻子影像去做辨識,使用二維主成份分析(2DPCA)演算法去做辨識,辨識結果為側臉就不進行追蹤,只有辨識為正臉才進行追蹤。
當正臉被辨識成功,找出中心點的位置,對人臉建構顏色直方圖模型,人臉追蹤演算法是使用自組織隨時調變係數的粒子最佳化 (HPSO-TVAC) 演算法,當人臉遇到遮蔽問題,本文使用自適應搜尋框,當找不到人臉時使用較大的搜尋框,搜尋框的縮放是依照群體最佳適應值。
摘要(英) The main purposes of this thesis are to achieve human face detection and head posture recognition, as well as to track a dynamic image in real time via camera. First, skin-color region is detected, after morphological operations, unnecessary noise is removed, and the method of seed region growing is used to mark pixel blocks. Then the skin-color region is determined whether or not each block is a human face. If it is not human face, it is discarded. Otherwise, wavelet transform is used to decompose the face image. A low-frequency sub-band face image is captured by wavelet transform, and two-dimensional principle component analysis (2DPCA) is used to recognize head posture. Face color histograms are used to build face models, and faces are traced by the Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients (HPSO-TVAC) algorithm. In order to solve the face masking problem, adaptive seeking windows are applied. When a human face is not detected, a large seeking window will be used, which will zoom in or out depending on the best global fitness.
關鍵字(中) ★ 人臉偵測
★ 種子區域生長法
★ 小波圖像分割法
★ 2DPCA演算法
★ HPSO-TVAC演算法
★ 自適應搜尋框
關鍵字(英) ★ Face Detecting
★ Seed Region Growing
★ Wavelet Transform
★ 2DPCA
★ HPSO-TVAC
★ Adaptive Seeking Window
論文目次 目錄
頁次
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 簡介 1
1-2 研究動機與方法 2
1-3 文獻回顧與探討 3
1-4 主要貢獻 4
1-5 論文架構 5
第二章 軟硬體與系統模型 6
2-1 外部硬體 6
2-2 內部軟體 7
2-3 系統架構 9
第三章 人臉偵測 10
3-1 色彩空間介紹 11
3-1-1 RGB色彩空間 11
3-1-2 Lab色彩空間 12
3-1-3 YIQ色彩空間 12
3-1-4 YCbCr色彩空間 12
3-1-5 HSV色彩空間 13
3-2 膚色切割法 14
3-3 二值化處理 16
3-4 形態學處理 17
3-4-1 侵蝕(Erosion) 17
3-4-2 膨脹(Dilation) 19
3-4-3 斷開(Opening) 20
3-4-4 閉合(Closing) 21
3-4-5 雜訊移除(Noise Removal) 22
3-5 連通區域標記法 24
3-5-1 區域分裂合併法(Region Splitting and Merging) 24
3-5-2 分水嶺法(Watershed) 25
3-5-3 種子區域生長法(Seeded Region Growing) 26
3-5-4 改良式種子區域生長法 28
3-6 人臉判定法 32
3-6-1 人臉的長寬比例 32
3-6-2 臉部的黑洞數 32
第四章 人臉姿態辨識 35
4-1 雙線性內插縮圖法 36
4-2 小波圖像分割法 38
4-2-1 小波介紹 38
4-2-2 小波應用於影像辨識 38
4-3 主成份分析演算法 41
4-3-1 主成份分析簡介 41
4-3-2 主成份分析應用於影像辨識 42
4-4 二維主成份分析演算法 46
4-5 辨識方法 51
第五章 人臉追蹤方法與分析 52
5-1 建構人臉直方圖模型 53
5-2 基本PSO演算法 56
5-3 HPSO-TVAC演算法 61
5-4 區域搜尋 65
5-5 適應函數 68
5-6 自適應搜尋框 68
第六章 實驗結果與討論 71
6-1 人臉偵測實驗 73
6-2 人臉姿態辨識實驗 77
6-3 人臉追蹤實驗 82
第七章 結論與建議 89
7-1 結論 89
7-2 建議 90
參考文獻 91
附錄 96
參考文獻 參考文獻
[1] Youlian Zhu, Cheng Huang and Jiajun Chen, “Face Detection Method Based on Multi-feature Fusion in YCbCr Color Space”, International Congress on Image and Signal Processing, pp. 1249-1252, Oct. 2012.
[2] Prashanth Kumar G and Shashidhara M, “Skin Color Segmentation for Detecting Human Face Region in Image”, International Conference on Communication and Signal Processing, pp. 001-005, 2014.
[3] Dr. C . P. Sumathi, M. Mahadevi , “Comparative analysis of skin color model for face detection”, International Symposium on Biometrics and Security Technologies, pp.24-28, 2014.
[4] Douglas Chai, King N. Ngan, “Face Segmentation Using Skin-Color Map in Videophone Applications”, IEEE Transactions on Circuits and Systems for Video Technology, vol.9, Issue.4, pp.551-564, Jun. 1999.
[5] Leyuan Liu, Nong Sang, Saiyong Yang and Rui Huang, “Real-time skin color detection under rapidly changing illumination conditions”, IEEE Transactions on Consumer Electronics, vol.57, Issue.3, pp.1295-1302, August. 2011.
[6] L. Bischof, and R. Adams, “Seeded Region Growing”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, no. 6, pp. 641-647, June 1994.
[7] Sudeep D. Thepade, Shwetali Erandole, “Extended performance comparison of tiling based image compression using wavelet transforms & hybrid wavelet transforms”, IEEE Conference on Information & Communication Technologies, pp.1150-1155, Apr.2013.
[8] Chien-Hsing Lee Ying-Pu Lin Kai-Lun You, “Real Time Face Detection and Recognition”, Journal of Technology, Vol. 24, No. 2, pp. 131-141, 2009.
[9] S.J. Lee, and S.B. Jung, ‘‘Face detection and recognition using PCA, ’’TENCON 99. Proceedings of the IEEE Region 10 Conference., vol.1, pp.84-87, 1999.
[10] M. A. P. Turk, A.P., “Face recognition using eigenfaces”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.586-591, Jun.1991.
[11] P. N. H. Belhumeur, J.P.; Kriegman, D.J., “Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19, Issue.1, Jul. 1997.
[12] Roberto Brunelli and Tomaso Poggio, “Face Recognition: Feature versus Templates”, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol.15, no. 10, pp.1042-1052, Oct. 1993.
[13] Baback Moghaddam, Alex Pentland, Thad Starner “View-Based and Modular Eigenspaces for Face Recongnition”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.84-91, Jun. 1994.
[14] Masoud Mazloom and Saeed Ayat, “Combinational Method for Face Recognition: Wavelet, PCA and ANN ”, Digital Image Computing: Techniques and Applications, pp. 90 – 95, Dec. 2008
[15] Yuqing He, Guangqin Feng, Feihu Liu, Huan He, “Near Infrared Face Recognition Based on Wavelet Transform and 2DPCA”, Intelligent Computing and Integrated Systems, pp.359 - 362, Oct. 2010.
[16] Lih-Heng Chan, Sh-Hussain Salleh, Chee-Ming Ting, A. K. Ariff, “Face Identification and Verification Using PCA and LDA”, Information Technology, 2008. ITSim 2008. International Symposium, vol. 2, pp.1-6, Aug. 2008.
[17] Liu Song and Luo Min, “Face Recognition Based on 2DPCA and DWT”, Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, vol.2, pp.1459 - 1462, July. 2011.
[18] Jian Yang, David Zhang, Alejandro F. Frangi, Jing-yu Yang, “Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, Issue.1, pp.131-137, Jan. 2004.
[19] Yanwei Pang, Dacheng Tao, Yuan Yuan, Xuelong Li, “Binary Two-Dimensional PCA”, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol.38, Issue. 4, pp.1176-1180, Aug. 2008.
[20] D.-S. Jang and H.-I. Choi, “Active models for tracking moving objects”, Pattern Recognit., vol. 33, no. 7, pp. 1135–1146, 2000.
[21] N. Peterfreund, “Robust tracking of position and velocity with Kalman snakes,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, pp. 564–569, June 2000.
[22] D. Comaniciu , V. Ramesh,Meer, P. Meer, “Kernel-based object tracking”, Real-Time Vision & Modeling Dept., Siemens Corporate Res., Princeton, NJ, USA.
[23] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder: real-time tracking of the human body,” IEEE Trans. Pattern Anal. Machine Intell., vol. 19, pp. 780–785, July 1997.
[24] Xiaoqin Zhang, Weiming Hu, Wei Qu, Steve Maybank, “Multiple Object Tracking Via Species-Based Particle Swarm Optimization”, IEEE Transactions on Circuits and Systems for Video Technology, vol.20, Issue.4, Nov. 2010.
[25] A. Ratnaweera, S. K. Halgamuge, “Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients”, IEEE Trans. on Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 240-255, 2004.
[26] S. H. Ling, H. H. C. Iu, K. Y. Chan, H. K. Lam, B. C. W. Yeung, and F. H. Leung, “Hybrid particle swarm optimization with wavelet mutation and its industrial applications,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 3, pp. 743–763, Jun. 2008.
[27] Yuhua Zheng and Yan Meng, “The PSO-Based Adaptive Window for People Tracking”, Symposium on Computational Intelligence in Security and Defense Applications, pp.23-29, April 2007.
[28] J. Kennedy and R. C. Eberhert, “Particle Swarm Optimization”, in Proceeding of IEEE International Conference on Neural Networks, 1942-1948, 1995.
[29] W.-N. Chen, J. Zhang, Y. Lin, N. Chen, Z.-H. Zhan, H. Chung, Y. Li, and Y.-h. Shi, “Particle swarm optimization with an aging leader and challengers,” IEEE Transactions on Evolutionary Computation, vol. 17, no. 2, pp. 241–258, 2013.
[30] T. Kobayashi, K. Nakagawa, J. Imae and G. Zhai, “Real Time Object tracking on Video Image Sequence using Particle Swarm Optimization”, International Conference on control, Automation and systems, pp 1773-1778, Seoul, Korea, 2007.
[31] Y. Zheng, Y. Meng. “Adaptive Object Tracking using Particle Swarm Optimization”. IEEE International Symposium on Computational Intelligence in Robotics and Automation, 2007, pp.43-48.
[32] Z.-H. Zhan, J. Zhang, Y. Li, and Y.-H. Shi, “Orthogonal learning particle swarm optimization,” IEEE Transactions on Evol. Comput, vol. 15, no. 6, pp. 832–847, Dec. 2011.
[33] A. Djouadi, O. Snorrason and F. D. Garber, “The Quality of Training-Sample Estimates of the Bhattacharyya Coefficient”, IEEE Transactions Pattern Analysis Machine Intelligence, Vol. 12, pp. 92-97, 1990.
[34] Jain A. K. Fundamentals, “digital image processing”. New York Prentice Hall, 1989.
[35] Microsoft Corp, Kinect, http://www.xboxkinection.com
[36] Visual C#, https://msdn.microsoft.com/zh-tw/library/kx37x362.aspx
[37] http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/histograms/histogram_comparison.html
[38] 人臉識別, http://blog.csdn.net/jinshengtao/article/details/18599165
[39] 廖志儒,「人臉辨識在Android平台之實現」,國立中央大學,碩士論文,民國102年
[40] 梁皓雲,「利用區塊人臉特徵為基礎之混合式人臉辨識系統」,國立中央大學,碩士論文,民國95年
[41] 楊上毅,「人臉追蹤與辨識之自動化視訊監控系統」,國立成功大學,碩士論文,民國97年
[42] 何曉平,「串流影像之即時人臉偵測、追蹤與辨識-嵌入式系統設計」,國立中央大學,碩士論文,民國99年
[43] 張榮貴,「基於HPSO-TVAC演算法於多目標追蹤系統之研究」,國立中央大學,碩士論文,民國103年
[44] 賴俊良,「移動目標物視覺偵測與追蹤研究」,國立成功大學,碩 士論文,民國95年
[45] 陳會安編著,「新觀念Visual C# 程式設計範例教本」,旗標出版,第二版,民國102年
[46] 求是科技編著,「Visual C++數位影像處理技術大全」,文魁出版,民國97年
[47] 求是科技.張宏林編著,「Visual C++數位影像模式識別技術及工程實踐」,文魁出版,民國97年
指導教授 鍾鴻源(Hung-yuan Chung) 審核日期 2015-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明