博碩士論文 102521077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:54.92.148.165
姓名 邱柏勝(Po-Sheng Chiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於環型對稱賈柏濾波器及SVM之人臉識別系統
(Face Recognition System Based on Circularly Symmetrical Gabor Filter and SVM)
相關論文
★ 影像處理運用於家庭防盜保全之研究★ 適用區域範圍之指紋辨識系統設計與實現
★ 頭部姿勢辨識應用於游標與機器人之控制★ 應用快速擴展隨機樹和人工魚群演算法及危險度於路徑規劃
★ 智慧型機器人定位與控制之研究★ 基於人工蜂群演算法之物件追蹤研究
★ 即時人臉偵測、姿態辨識與追蹤系統實現於複雜環境★ 改良凝聚式階層演算法及改良色彩空間影像技術於無線監控自走車之路徑追蹤
★ 模糊類神經網路於六足機器人沿牆控制與步態動作及姿態平衡之應用★ 四軸飛行器之偵測應用及其無線充電系統之探討
★ 結合白區塊視網膜皮層理論與改良暗通道先驗之單張影像除霧★ 基於深度神經網路的手勢辨識研究
★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統★ 模糊控制與灰色預測應用於隧道型機械手臂之分析
★ 模糊滑動模態控制器之設計及應用於非線性系統★ 階層式模糊控制及其在倒三角體系統之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文提出了一個實現基於賈伯濾波器(Gabor filter)以及支持向量機(support vector machine, 簡稱SVM)的人臉識別演算法。在所提出的方法中,使用環型對稱賈伯濾波器(circularly symmetrical Gabor Filter, 簡稱CSG filter)來取代傳統的賈伯濾波器並結合SVM分類器,應用在影像識別上。
基於傳統賈伯濾波器的人臉辨識系統,對於增進人臉影像變化的穩健性是具有良好的效能,然而卻還是存在著一些問題。在傳統的賈伯濾波器中,不存在旋轉的不變性(rotation invariant)以及其計算複雜度過高,而這些問題在應用於動態及時影像識別上,會成為很大的缺點。因此,本篇論文提出使用環型對稱賈伯轉換濾波器取代傳統的賈伯轉換並且以支持向量機對影像做訓練,測試系統的排外性、濾波器參數對辨識效率的影響,以達到增進人臉識別系統的效能。
摘要(英) In this thesis, the face recognition algorithm for the realization of Gabor filter and the support vector machine (SVM) classifier is proposed. In the proposed algorithm, the circularly symmetrical Gabor Filter (SCG Filter) is used to replace the traditional Gabor filter and the SVM classifier is integrated in the application of image recognition.
While the face recognition algorithm based on the Gabor filter has good performance in improving robustness on face image variances, there are still some problems. The traditional Gabor filter has no rotation invariant and its calculation is too complicated. These problems will become an obstacle in application of image recognition. In this thesis, a CSG Filter is proposed to replace the traditional Gabor transform filter and the SVM is used to train images in face recognition. Also, we test the exclusivity of the system and the impact of filter parameters on identification efficiency to promote the effectiveness of the face recognition system.
關鍵字(中) ★ 影像處理
★ 人臉識別
★ 賈柏濾波器
★ 環型對稱賈柏濾波器
★ 支持向量機
關鍵字(英) ★ Image Processing
★ Face Recognition
★ Gabor Filter
★ Circularly Symmetrical Gabor Filter
★ Support Vector Machine
論文目次 第一章 緒論 1
1.1 研究動機 1
1.2 相關研究 4
1.3 主要貢獻 7
1.4 論文架構 8
第二章 人臉定位 9
2.1 膚色偵測(Skin-color Detection) 9
2.1.1色彩空間(Color Space) 9
2.1.2 膚色擷取(Skin-color Extraction) 11
2.1.3 二值化處理(Binarization) 12
2.2 形態學處理(Morphology) 13
2.2.1 膨脹(Dilation) 14
2.2.2 侵蝕(Erosion) 15
2.2.3 斷開(Opening) 16
2.2.4 閉合(Closing) 17
2.3 連通元件標記演算法(Connected Component Labeling Algorithm) 19
2.3.1元件標記(Component Labeling) 21
2.4直方圖等化(Histogram Equalization) 24
2.5雙線性內插法(Bilinear Interpolation) 25
第三章 應用環型對稱賈伯濾波器之人臉辨識 27
3.1 影像特徵分析 27
3.1.1 空間域之特徵分析 28
3.1.2 頻域之特徵分析 29
3.2 賈伯濾波器與視覺模型 32
3.2.1賈伯濾波器(Gabor Filter) 32
3.2.2 環型對稱賈伯濾波器(Circularly Symmetrical Gabor Filter) 36
3.3 濾波器之特徵提取 39
3.3.1 二維離散疊加摺積 40
3.3.2 快速傅立葉摺積 41
第四章 支持向量機 42
4.1統計學習以及樣本學習模型 42
4.2風險函數 43
4.2.1 經驗風險最小化原則 44
4.2.2結構風險最小化原則 45
4.2.3最佳化風險函數 47
4.3支持向量機 48
4.3.1最佳分類超平面(optimal separating hyperplane) 49
4.3.2 線性可分情形 51
4.3.3 線性不可分情形 52
4.4訓練人臉影像 55
4.4.1一對一訓練 55
4.4.2一對多訓練 56
第五章 實驗結果與討論 59
5.1實驗機制 59
5.1.1 實驗設備 59
5.1.2系統架構 60
5.2實驗結果與比較 62
5.2.1 混和人臉資料庫實驗 64
5.2.2 隨選ORL及混和人臉資料庫中12人做測試 66
5.2.3 濾波器參數影響 67
5.3實驗結果與討論 69
第六章 結論與未來展望 71
6.1結論 71
6.2未來展望 72
參考文獻 [1] C. Klomanee and DT Nguyen, “On the Design of 2-D Gabor Filtering of Fingerprint Images,” IEEE Consumer Communications and Networking Conferenece, CCNC, 2004 1st IEEE Communications and Networking Conferenece, CCNC 2004; Consumer Networking: Closing the Digital Divide – Proceedings, 2004, p 430-435.
[2] X. Tan, S. Chen, Z. H. Zhou, and F. Zhang, “Face Recognition from A Single Image Per Person: A Survey,” Pattern Recognition, vol. 39, pp. 1725-1745, 2006.
[3] M. H. Yang, D. Kriegman, and N. Ahuja, “Detecting Faces in Images: ASurvey,” IEEE Trans. Analysis and Machine Intelligence, vol. 24, pp. 34-58, Jan. 2002.
[4] R. L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, “Face Detection in Color Images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp 696-706, 2002.
[5] S. Birchfield, “Elliptical head tracker,” Conference Record of the Asilomar Conference on Signals, Systems & Computers, v 2, 1997, p 1710-1714.
[6] S. Birchfield, “Elliptical head tracking using intensity fradients and color histograms,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1998, p 232-237.
[7] T. Kawaguchi, D. Hidaka, and M. Rizon, “Detection of eyes from human faces by Hough transform and separability filter,” IEEE International Conference on Image Processing, v 1, 2000, p 49-52.
[8] H. Rowley, S. Baluja, and T. Kanade, “Network-Based Face Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, pp. 23-38, Jan. 1998.
[9] K. K. Sung and T. Poggio, “Example-Based Learning for View-Based Human Face Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp. 39-51, Jan 1998.
[10] P. Viola and M. J. Jones, “Rapid Object Detection using a Boosted Cascade of Simple Feature,” in Proceedings of the IEEE Computer Society International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511-518, Dec. 2001.
[11] E. Osuna, R. Freund, and F. Girosi, “Training Support Vector Machines: An Application to Face Detection,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp.130-136, San Juan, Puerto Rico, 17-19 jun. 1997.
[12] M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” Proc 91 IEEE Comput Soc Conf Comput Vision Pattern Recognit, 1991, p 586-591.
[13] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenface vs. fisherfaces: recognition using class specific linear projection,” IEEE Transaction on Pattern Analysis and Machine Intelligence, v 19, n 7, Jul, 1997, p 711-720.
[14] V. Vapnik., Statistical Learning Theory, John Wiley & Sons, New York, 1998.
[15] V. Vapnik., The Nature of Statistical Learning Theory, 2nd edition, Springer- Verlag, New York, 1999.
[16] G. Guo, S. Z. Li, and K. L. Chan, “Support vector machine for face recognition,” Image and Vision Computing, v 19, n 9-10, Aug 1, 2001, p 631-638.
[17] A. S. Georghiades, P. N. Belhumer, and D. J. Kriegman, “From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, pp. 643-660, Jun. 2001.
[18] L. Wiskott, J. M. Fellous, N. Kruger, and C. v. d. Malsburg, “Face Recognition by Elastic Bunch Graph Matching,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, pp. 775-779, Jul. 1997.
[19] R. Gottumukkal, and V.K. Asari, ‘‘Real time face detection from color video stream based on PCA method,’’ Applied Imagery Pattern Recognition Workshop, Proceedings 32nd ., pp.146-150, 2003.
[20] R.C. Gonzalez and R.E. Woods, ‘‘Digital Image Processing Second Edition,’’ Addison-Wesley Publishing, NY., 2002.
[21] 連國珍,數位影像處理,台北,儒林圖書公司,民國93年,三版。
[22] Amadasun, M.; King, R. “Textural features corresponding to textural properties,” Systems, Man and Cybernetics, IEEE Transactions on , Volume: 19 Issue: 5 , Sept.-Oct. 1989 Page(s): 1264 —1274
[23] Gabor D. Theory of communication. J. Inst. Electr. Eng., Vol.93, 1946
[24] J.G. Daugman, “Two-Dimensional Spectral Analysis of Cortical Receptive Field Profiles,” Vision Research, vol. 20, pp 847-856,1980
[25] B. Zhang, W. Gao, S. Shan, W. Wang “Constraint Shape Model Based On Edge Constraint and Gabor Wavelet Search,” AVBPA, pp. 52-63, 2003.
[26] Buhmann J, Lang J, Malsburg C., “Distortion invariant object recognition by Matching Hierar-Chically Labeled Graphs,”
[27] M. Lades, J.C. Vorbruggen, J. Buhmann, J. Lange, C. von der Malsburg, Wurtz R.P., and W. Konen, “Distortion Invariant Object Recognition in The Dynamic Link Architecture,” IEEE Trans. On Computers, vol. 42, pp. 300-311, 1993.
[28] C. Liu, H. Wechsler, “Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition,” IEEEE Trans. Image Processing, vol. 11, no. 4, pp. 467-476, 2002.
[29] M. Lyons, S. Akamatsu, M. Kamachi and J. Gyoba, “Coding Facial Expressions with Gabor Wavelets”, Proc. IEEE Int’l Conf. Automatic Face and Gesture Recognition, pp. 200-205, Nara, Japan, Apr. 1998.
[30] L. Wiskott, “Face recognition by elastic bunch graph matching,” IEEE Trans. PAMI, vol.19, no.7, pp.775-779, 1997.
[31] C. Liu, H. Wechsler, “Independent component analysis of Gabor
Features for face recognition,” IEEE Trans. Neural Net., vol. 14, no.
4, pp. 919 - 928,2003.
[32] J. Zhang, T. Tan, L. Ma, “Invariant texture segmentation via circular
Gabor filters,” in Proc. of 16th Intern. Confer. on Patt. Recog., vol.2,
pp.901 – 904, 2002.
[33] R. Porter, N. Canagarajah, “Robust rotation-invariant texture
classification: wavelet, Gabor filter and GMRF based schemes,” IEE
Proc.-Vis., Imag. Signal Proc., vol. 144, no. 3, pp.180 – 188, 1997.
[34] H. Wang, J. Wang, “Face Recognition Based on Circularly Symmetrical Gabor Transform,” IEEE Int. Conf. on Info. and Auto, pp. 22-25, Jun. 2009.
[35] Y. Zang, N. Sun, “A new eye location method based on Ring Gabor Filter,” IEEE Int. Conf. on Auto. And Log. , Sep. 2008.
[36] G. Guo, S. Z. Li, and K. L. Chan, “Support vector machines for face recognition,” Image and Vision Computing, v 19, n 9-10, Aug 1, 2001, p 631-638.
[37] Y. J. Wang, C. S. Chua, and Y. K. Ho, “Facial feature detection and Face recognition from 2D and 3D image,” Pattern Recognition Letters, v 23, n 10, August, 2002, p1191-1202.
[38] V. Vapnik, Statistical Learning Theory, John Wiely & Sons, New York, 1998.
[39] V. Vapnik., The Nature of Statistical Learning Theory, 2nd edition, Springer-Verlag, New York, 1999.
[40] 陳俊瑋,「一個擷取Gabor特徵的SVM人臉辨識方法」,國立臺灣科技大學,碩士論文,民國95年。
[41] 侯俊成,「頭部姿勢辨識應用於游標與機器人之控制」,國立中央大學,碩士論文,民國95年。
指導教授 鍾鴻源(Hung-Yuan Chung) 審核日期 2015-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明