博碩士論文 102521080 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.232.127.73
姓名 張伯墉(Bo-Yong Jhang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 適應性自我學習粒子群演算法
(Adaptive Self-Learning Particle Swarm Optimization)
相關論文
★ 小型化 GSM/GPRS 行動通訊模組之研究★ 語者辨識之研究
★ 應用投影法作受擾動奇異系統之強健性分析★ 利用支撐向量機模型改善對立假設特徵函數之語者確認研究
★ 結合高斯混合超級向量與微分核函數之 語者確認研究★ 敏捷移動粒子群最佳化方法
★ 改良式粒子群方法之無失真影像預測編碼應用★ 粒子群演算法應用於語者模型訓練與調適之研究
★ 粒子群演算法之語者確認系統★ 改良式梅爾倒頻譜係數混合多種語音特徵之研究
★ 利用語者特定背景模型之語者確認系統★ 智慧型遠端監控系統
★ 正向系統輸出回授之穩定度分析與控制器設計★ 混合式區間搜索粒子群演算法
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 於本篇論文中,我們提出一種改良式的粒子群演算法,名稱為適應性自我學習粒子群演算法(Adaptive Self-Learning Particle Swarm Optimization, ASLPSO),並將其應用於資料分群之問題。本文利用自我學習機制,讓粒子能夠向表現比他更好的其他粒子學習,以獲取有用的資訊,並再透過動態的模式轉換策略改進粒子的搜尋能力,使粒子能在演算法疊代過程的不同階段,轉換其搜尋模式,以提高找到全域最佳解的可能性。我們最後使用16種測試函數進行模擬,與其他已提出的不同改良式粒子群演算法做比較,實驗的結果表示,本文所提出的改良方法可以在大部分的測試函數中有著較佳的表現。最後並將本文的改良式演算法運用在資料分群的問題上,我們可以在某些性能指標上得到更好的結果,但也有較差的部分,這顯示本文的方法仍有進一步改善的可能。
摘要(英) This thesis proposes a new particle swarm optimization (PSO) called Adaptive Self-Learning Particle Swarm Optimization (ASLPSO), and applies it to the classification problem. A self-learning method is introduced in the ASLPSO that every particle randomly selects its learning object among the better particles to acquire useful information. We also designs a dynamic transition strategy to improve the searching approach of particles during the iterations. In the experiments, the performance of the proposed ASLPSO is compared to several improved PSO’s in the literature by testing sixteen benchmark functions. The experimental results show that the proposed algorithm performs better on most of the functions. At last, the ASLPSO is applied to a classification problem. In our experiments, many classification results are better, but not all. To be more precisely, the ASLPSO is supposed to be refined in some ways.
關鍵字(中) ★ 粒子群演算法
★ 資料分群
★ K-means演算法
★ 群集分析
關鍵字(英) ★ particle swarm optimization
★ data clustering
★ K-means clustering
★ cluster analysis
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1研究動機 1
1.2論文架構 3
第二章 粒子群演算法 4
2.1傳統粒子群演算法 4
2.2傳統粒子群演算法的基本形式 4
2.3慣性權重 5
第三章 適應性自我學習粒子群演算法 9
3.1資訊的傳遞 9
3.1.1粒子的經驗交流 9
3.1.2自我學習機制 10
3.2搜尋模式的轉換策略 14
3.3適應性自我學習粒子群演算法 15
3.4 學習機制的比較 17
3.4.1 10維的比較 22
3.4.2 30維的比較 24
第四章 實驗結果 26
4.1 目標函數 26
4.2 參數設定與測試方法 30
4.2.1 測試函數在10維下的結果 31
4.2.2 測試函數在30維下的結果 42
第五章 適應性自我學習粒子群演算法於資料分群之應用 54
5.1 K-means演算法 54
5.2將粒子群演算法應用於資料分群問題 56
5.3以適應性自我學習粒子群演算法進行資料分群 57
5.4模擬結果 58
第六章 總結與未來展望 63
6.1總結 63
6.2未來展望 63
參考文獻 64
參考文獻 [1] J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” In Proceedings of IEEE International Conference on Neural Networks,” Vol. IV, pp. 1942−1948, 1995.
[2] W. D. Chang and S. P. Shih, “PID controller design nonlinear systems using an improved particle swarm optimization approach,” Communication Nonlinear Science and Numerical Simulation, Vol. 15, pp. 3632-3639, 2010.
[3] R. A. Krohling and L. S. Coelho, “Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problem,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , Vol. 36, No. 6, pp. 1407-1416, 2006.
[4] G. Zeng and Y. Jiang, “A Modified PSO Algorithm with Line Search,” In Proceedings of 2010 International Conference on Computational Intelligence and Software Engineering, pp. 1-4, 2010.
[5] H. Babaee and A. Khosravi, “An Improve PSO Based Hybrid Algorithms,” In Proceedings of 2011 International Conference on Management and Service Science, pp. 1-5, 2011.
[6] S. Y. Ho, H. S. Lin, W. H. Liauh, and S. J. Ho, “OPSO: Orthogonal particle swarm optimization and its application to task assignment problems,” IEEE Transactions on Man and Cybernetics, Part A: Systems and Humans, Vol. 38, No. 2, pp. 288-298, 2008.
[7] Y. Shi and R. C. Eberhart, “Evolutionary Programming VII, Parameter Selection in Particle Swarm Optimization,” Springer Berlin Heidelberg, Vol. 1447, pp. 591–600, 1998.
[8] M. Clerc, “The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization,” In Proceedings of the Congress on Evolutionary Computation, Vol. 3, pp. 1951−1957, 1999.
[9] M. Clerc and J. Kennedy, “The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1, pp. 58-73, 2002.
[10] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients,” IEEE Transactions On Evolutionary Computation, pp. 240-255, 2004.
[11] N. M. Kwok, D. K. Liu, K. C. Tan, and Q. P. Ha, “An Empirical Study on the Settings of Control Coefficients in Particle Swarm Optimization,” In Proceedings of IEEE Congress on Evolutionary Computation, pp. 823-830, 2006.
[12] J. Wei, L. Guangbin and L. Dong, “Elite Particle Swarm Optimization with Mutation,” In Proceedings of 2008 Asia Simulation Conference-7th International Conference on System Simulation and Scientific Computing, pp. 800-803, 2008.
[13] Y. -T Juang, S. -L. Tung, and H. -C. Chiu, “Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions,” International Journal of Information Sciences, Vol. 181, pp. 4539-4549, 2011.
[14] M. R. Tanweer, S. Suresh, and N. Sundararajan, “Self regulating particle swarm optimization algorithm,” International Journal of Information Sciences, pp. 182-202, 2015.
[15] Y. Shi and R. C. Eberhart, “Particle Swarm Optimization:Development, Applications and Resource,” In Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1, pp. 81-86, 2001.
[16] 吳讚展,「自調整非線性慣性權重粒子群演算法」,桃園市:國立中央大學,碩士論文,民國101年。
[17] Y. Shi and R. C. Eberhart, “Empirical Study of Particle Swarm Optimization,” In Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3, pp. 1945-1950, 1999.
[18] I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis and parameter selection,” Elsevier Science B.V., Vol. 85, pp. 317-325, 2003.
[19] J. Kennedy, R. C. Eberhart, and Y. Shi, “Swarm intelligence,” Morgan Kaufmann Publishers, San Francisco, 2001.
[20] T. -H Kim, I. Maruta, and T. Sugie, “Robust PID controller tuning based on the constrained particles swarm optimization,” Automatica, Vol. 44, no. 4, pp.1104-1110, 2008.
[21] A. W. Mohemmed, Z. Mengjie, and N. C. Sahoo, “A new particle swarm optimization based algorithm for solving short-paths tree problems,” In Proceedings of IEEE Congress on Evolutionary Computation, pp. 3221-3225, 2007.
[22] J. P. Papa, L. M. G. Fonseca, and L. A. S. de Carvalho, “Projections onto convex sets through particle swarm optimization and its application for remote sensing image restoration,” Pattern Recognition Letters. Vol. 31, pp. 1876-1886, 2010.
[23] 米勒(Peter Miller),林俊宏譯,《群的智慧:向螞蟻、蜜蜂、飛鳥學習組織運作技巧》(The smart swarm: how understanding flocks, schools and colonies can make us better at communicating, decision making, and getting things done),臺北市:天下遠見,2010。
[24] W. H. Lim, “Particle swarm optimization with adaptive time-varying Topology connectivity,” Applied Soft Computing , Vol. 24, pp. 623-642, 2014.
[25] J. Kennedy and R. Eberhart, “The particle swarm optimization: Social adaptation of knowledge,” In Proceedings of the International conference on Evolutionary Computation, pp. 303-308, 1997.
[26] W. H. Lim, “Particle swarm optimization with increasing topology connectivity,” Engineering Applications of Article Intelligence, Vol. 27, pp. 80-102, 2014.
[27] D. Chen, F. Zou, Z. Li, J. Wang, and S. Li, “An improved teaching-learning-based optimization algorithm for solving global optimization problem,” International Journal of Information Sciences, Vol. 297, pp. 179-190, 2015.
[28] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm:simpler, maybe better,” IEEE Transactions on Evolutionary Computation, Vol. 8, pp. 204-210, 2004.
[29] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. -P. Chen, A. Auger, and S. Tiwari, “Problem definitions and evaluation criteria for the CEC2005 special session on real-parameter optimization,” Technical report of Nanyang Technological University, 2005.
[30] N. Iwasaki, K. Yasuda, and G. Ueno, “Dynamic parameter tuning of particle swarm optimization,” IEEE Transactions on Electrical and Electronic Engineering, pp. 353-363, 2006.
[31] M. A. Montes de Oca, J. Pena, T. Stutzle, C. Pinciroli, and M. Dorigo, “Heterogeneous particle swarm optimizers,” In Proceedings of IEEE Congress on Evolutionary Computation, pp. 698–705, 2009.
[32] M. Pant, T. Radha, and V. P. Singh, “A New Particle Swarm Optimization with Quadratic Interpolation,” In Proceedings of International Conference on Computational Intelligence and Multimedia Applications, pp. 55-60, 2007.
[33] K. E. Parsopoulos and M. N. Vrahatis, “UPSO: a unified particle swarm optimization scheme,” In Lecture series on Computer and Computational Sciences, Vol. 1, pp. 868-873, 2004.
[34] J. J. Liang, and P. N. Suganthan, “Dynamic multi-swarm particle swarm optimizer,” In Proceedings of IEEE on Swarm Intelligence Symposium, pp. 124-129, 2005
[35] 陳珈妤,「快速平衡粒子群最佳化方法」,桃園市:國立中央大學,碩士論文,民國100年。
[36] 蔡憲文,「以時變學習因子策略改良粒子群演算法」,桃園市:國立中央大學,碩士論文,民國99年。
[37] A. Chatterjee and P. Siarry, “Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization,” Computers and Operations Research, Vol. 33, No. 3, pp. 859-871, 2004.
[38] 李憲昌,「維度經驗重心分享粒子群演算法」,桃園市:國立中央大學,碩士論文,民國102年。
[39] 顏淯翔,「改良式粒子群方法之影像追蹤系統應用」,桃園市:國立中央大學,碩士論文,民國103年。
[40] 王鈺潔,「自適應解分享粒子群演算法及其在螺旋電感最佳化設計之應用」,桃園市:國立中央大學,碩士論文,民國104年。
[41] M. R. Anderberg, “Cluster Analysis far Application,” Academic Press, New York, 1973.
[42] J. Han and M. Kamber, “Data Mining: Concepts and Techniques,” Morgan Kaufmann, 2000.
[43] K. Cios, W. Pedrycs, and R. Swiniarski, “Data Mining – Methods for Knowledge Discovery,” Kluwer Academic Publishers, 1998.
[44] M. Omran, A. Salman, and A. P. Engelbrecht, “Image Classification using Particle Swarm Optimization,” In Proceedings of the Conference on Simulated Evolution and Learning, pp. 370-374, 2002.
[45] J. B. MacQueen, “Some methods for classification and analysis of multivariate observations,” In: Proceedings of the Fifth Berkeley Symp. Math. Stat. Prob., pp. 281-297, 1967.
[46] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM Computing Surveys, pp. 264-323, 1999.
[47] X. Cui and T. E. Potok, “Document Clustering Analysis Based on Hybrid PSO+K-means Algorithm,” Journal of Computer Sciences (Special Issue), pp. 27-33, 2005.
[48] 楊正宏、蕭智仁和莊麗月,K-means結合混沌PSO應用於資料分群問題,台北市:ICIM2009 第二十屆國際資訊管理學術研討會,pp. 218-227,2009。
[49] D. W. van der Merwe, and A. P. Engelhrecht, “Data Clustering using Particle Swarm Optimization,” In Proceedings of the IEEE Congress on Evolutionary Computation, pp. 215-220, 2003.
[50] A. Abraham, S. Das, and S. Roy, “Swarm Intelligence Algorithms for Data Clustering,” In Soft Computing for Knowledge Discovery and Data Mining, pp. 279-313, 2008.
指導教授 莊堯棠(Yau-Tarng Juang) 審核日期 2016-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明