博碩士論文 102521082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:54.81.220.239
姓名 蔡尚麟(Shang-Lin Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於人工蜂群演算法之物件追蹤研究
(Objects Tracking Based on Artificial Bee Colony Algorithm)
相關論文
★ 影像處理運用於家庭防盜保全之研究★ 適用區域範圍之指紋辨識系統設計與實現
★ 頭部姿勢辨識應用於游標與機器人之控制★ 應用快速擴展隨機樹和人工魚群演算法及危險度於路徑規劃
★ 智慧型機器人定位與控制之研究★ 即時人臉偵測、姿態辨識與追蹤系統實現於複雜環境
★ 基於環型對稱賈柏濾波器及SVM之人臉識別系統★ 改良凝聚式階層演算法及改良色彩空間影像技術於無線監控自走車之路徑追蹤
★ 模糊類神經網路於六足機器人沿牆控制與步態動作及姿態平衡之應用★ 四軸飛行器之偵測應用及其無線充電系統之探討
★ 結合白區塊視網膜皮層理論與改良暗通道先驗之單張影像除霧★ 基於深度神經網路的手勢辨識研究
★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統★ 模糊控制與灰色預測應用於隧道型機械手臂之分析
★ 模糊滑動模態控制器之設計及應用於非線性系統★ 階層式模糊控制及其在倒三角體系統之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,隨著攝影機與監視器的普及,影像追蹤成為了一個熱門的議題。為了提升追蹤目標物的精準度和解決目標物遮蔽的問題,本論文採用人工蜂群(Artificial Bee Colony; ABC)演算法來對目標物進行即時追蹤。
在偵測目標物這方面,本論文採用了背景相減法,因其可以切割出完整的目標物體且運算量低,容易運用於即時系統中。再來則是利用改良的種子區域生長法來標記各個目標物,區分出各個目標物後,再計算出各個目標物的中心位置。接著對各個目標物建構顏色直方圖模型以便做追蹤使用,追蹤過程中很容易受到光線變化影響,本文是採用HSV色彩空間中的色相,去掉了亮度的影響可以成功降低光線變化所造成的干擾。物件追蹤則是利用了人工蜂群演算法來尋求最佳解,擁有結構簡單、容易使用及收斂速度快等特性。遮蔽物問題一直以來都是物件追蹤的一個問題,為了有效的解決遮蔽物問題,本論文使用了一個可以調整搜尋框大小的機制,在追蹤不到目標物的時候放大搜尋框來增加搜尋範圍,追蹤到目標物的時候又能將追蹤框調整回原來的大小。
摘要(英) In recent years, as cameras and monitors become more and more popular, object tracking becomes a hot issue. In order to improve the accuracy of the tracking object and solve the occlusion problem, in this thesis, the Artificial Bee Colony (ABC) algorithm is used for object tracking in real time.
In terms of object detection, in this thesis, the background subtraction is used for it can cut out complete targets, has low computation and be easily applied to real-time systems. Besides, the improved seed region growing method is used to distinguish every target and calculate its center. Then, for model building, color histograms are used to build target models. In order to avoid the interference of light, in this thesis, the HSV (Hue, Saturation and Value) color space is used. Moreover, for object tracking, in this thesis, the ABC algorithm which has a simple structure is used to find the best solution for it is easily used and its convergence is fast. Occlusion is always a big problem for object tracking. Therefore, in this thesis, the adaptive searching window is applied to exclude occlusion; the searching window will zoom in or out, depending on its fitness value. If the tracking window loses the targets, the searching window will increase. If the tracking window finds the targets, the searching window will adjust to the original size.
關鍵字(中) ★ 人工蜂群演算法
★ 物件追蹤
★ 物件偵測
★ 種子區域生長法
關鍵字(英) ★ ABC
★ Object tracking
★ Object detection
★ Seeded region growing
論文目次 目錄
中文摘要 i
英文摘要 ii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 簡介 1
1-2 研究動機與方法 1
1-3 文獻回顧 2
1-4 主要成果與貢獻 4
1-5 論文架構 4
第二章 軟硬體與系統架構 5
2-1 外部硬體 5
2-2 內部軟體 6
2-3 系統架構 7
第三章 偵測目標物與建模 8
3-1 色彩空間 9
3-1-1 RGB色彩空間 9
3-1-2 YUV色彩空間 10
3-1-3 HSV色彩空間 11
3-1-4 RGB轉灰階 12
3-1-5 RGB轉HSV 12
3-2 目標物體偵測 13
3-2-1 連續影像相減法(Temporal difference) 13
3-2-2 光流法(Optical flow) 13
3-2-3 背景相減法(Background substraction) 14
3-3 形態學處理 15
3-3-1 侵蝕(Erosion) 16
3-3-2 膨脹(Dilation) 17
3-3-3 斷開(Opening) 18
3-3-4 閉合(Closing) 19
3-4 影像分割 21
3-4-1 區域分裂與合併(Region Splitting and Merging) 21
3-4-2 種子區域生長法(Seeded Region Growing) 22
3-4-3 改良種子區域生長法 25
3-5 目標物建模 28
第四章 追蹤方法與分析 31
4-1 人工蜂群演算法 32
4-1-1 人工蜂群演算法背景 32
4-1-2 蜜蜂的行為模式 32
4-1-3 人工蜂群的數學模式 35
4-1-4 人工蜂群之演算程序 37
4-1-5 控制參數的影響 40
4-2 解空間與搜尋空間 41
4-2-1 解空間 41
4-2-2 搜尋空間 41
4-3 適應函數 43
4-4 遮蔽問題探討 44
4-5 完整追蹤流程 49
第五章 實驗結果與討論 51
5-1 模擬實驗 51
5-2 實際測試 55
第六章 結論與建議 65
6-1 結論 65
6-2 建議 65
參考文獻 66


圖目錄
頁次
圖 2.1 Kinect感測器外觀 5
圖 2.2 C#操作介面 6
圖 2.3 追蹤演算法基本流程圖 7
圖 3.1 物件偵測基本流程圖 8
圖 3.2 RGB加法混色法 9
圖 3.3 RGB色彩模型 9
圖 3.4 YUV色差模型 10
圖 3.5 HSV色輪 11
圖 3.6 背景相減法實際測試圖 15
圖 3.7 二值化圖像 15
圖 3.8 四鄰域與八鄰域 16
圖 3.9 四鄰域侵蝕過程 16
圖 3.10 八鄰域侵蝕過程 16
圖 3.11 侵蝕一次實際測試 17
圖 3.12 四鄰域膨脹過程 17
圖 3.13 八鄰域膨脹過程 17
圖 3.14 膨脹一次實際測試 18
圖 3.15 四鄰域斷開過程 18
圖 3.16 斷開實驗測試 19
圖 3.17 四鄰域閉合過程 19
圖 3.18 閉合實際測試 20
圖 3.19 先侵蝕一次在膨脹兩次 20
圖 3.20 先侵蝕一次在膨脹三次 20
圖 3.21 區域分割與合併示意圖 21
圖 3.22 目標物分割假想圖 23
圖 3.23 種子區域生長法掃描一次 24
圖 3.24 種子區域生長法的生長過程示意圖 24
圖 3.25 改良區域種子生長法標記情形 26
圖 3.26 改良區域種子生長法掃描一次 27
圖 3.27 改良種子區域生長法示意圖 27
圖 3.28 建構目標物直方圖模型示意圖 29
圖 4.1 物件追蹤基本流程 31
圖 4.2蜜蜂的覓食行為 34
圖 4.3 ABC流程圖 39
圖 4.4 追蹤框大小示意圖 41
圖 4.5 物體移動示意圖 42
圖 4.6 慣性運動和非慣性運動示意圖 42
圖 4.7 搜尋框與追蹤框示意圖 45
圖 4.8 搜尋框與追蹤框示意圖 46
圖 4.9 大型遮蔽物示意圖 47
圖 4.10 自適應搜尋框示意圖 48
圖 5.1 模擬實驗設置示意圖 51
圖 5.2 PSO模擬實驗 52
圖 5.3 ABC模擬實驗 52
圖 5.4 小遮蔽物無自適應搜尋框測試 56
圖 5.5 大遮蔽物無自適應搜尋框測試 57
圖 5.6 大型遮蔽物加了自適應搜尋框測試 58
圖 5.7 亮度正常 59
圖 5.8 亮度偏暗 60
圖 5.9 實驗動作 62
圖 5.10 多目標追蹤 63

表目錄
頁次
表一 疊代次數10次與10個解的模擬測試 52
表二 疊代次數20次與10個解的模擬測試 53
表三 疊代次數30次與10個解的模擬測試 53
表四 疊代次數10次與20個解的模擬測試 53
表五 疊代次數20次與20個解的模擬測試 53
表六 疊代次數30次與20個解的模擬測試 54
表七 ABC演算法模擬測試 54
表八 ABC亮度誤差 60
表九 PSO演算法實際測試 62
表十 ABC演算法實際測試 62
參考文獻 [1]G. Paravati, A. Sanna, B. Pralio and F. Lamberti, “A Genetic Algorithm for Target Tracking in FLIR Video Sequences Using Intensity Variation Function,” IEEE Transactions on Instrumentation and Measurement, vol. 58, pp. 3457-3467, 2009.
[2]H. Wang, M. W. Ren, and J. Y. Yang, “Object Tracking based on Genetic Algorithm and Kalman filter,” International Conference on Computational Intelligence and Security, vol. 1, pp. 80–85, 1997.
[3]X. Dong, J. Cao, H. Yang, Z. Yu, H. Guo and C. Liu, “Object Tracking based on integrating the Genetic algorithm with complex method,” International Conference on Intelligent Control and Information Processing, pp. 205-209, 2013.
[4]J. Kennedy and R. C. Eberhert, “Particle Swarm Optimization,” IEEE International Conference on Neural Networks, vol. 4 pp. 1942-1948, 1995.
[5]T. Kobayashi, K. Nakagawa, J. Imae and G. Zhai, “Real Time Object tracking on Video Image Sequence using Particle Swarm Optimization,” International Conference on Control, Automation and Systems, pp. 1773-1778, 2007.
[6]X. Zhang, W. Hu, S. Maybank, X. Li, and M. Zhu, “Sequential Particle Swarm Optimization for Visual Tracking,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2008.
[7]Y. Zheng and Y. Meng, “Adaptive Object Tracking using Particle Swarm Optimization,” International Symposium on Computational Intelligence in Robotics and Automation, pp. 43-48, 2007.
[8]Z. Hao, X. Zhang, P. Yu and H. Li, “Video Object Tracing Based on Particle Filter with Ant Colony Optimization,” International Conference on Advanced Computer Control, vol. 3, pp. 232-236, 2010.
[9]D. Karaboga, “An Idea Based On Honey Bee Swarm for Numerical Optimization,” Technical Report TR06, Computer Engineering Department, Erciyes University, 2005.
[10]W. Gao, S. Liu and L. Huang, “A Global Best Artificial Bee Colony Algorithm for Global Optimization,” Journal of Computational and Applied Mathematics, vol. 236, pp. 2741-2753, 2012.
[11]D. Karaboga and B. Basturk, “A powerful and Efficent Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm,” Journal of Global Optimization, vol. 39, 2007.
[12]Y. Yi and R. He, “A Novel Artificial Bee Colony Algorithm,” Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), pp. 271-274, 2014.
[13]E. Hancer, C. Ozturk and D. Karaboga, “Artificial Bee Colony based image clustering method,” IEEE Congress on Evolutionary Computation (CEC), pp. 1-5, 2012.
[14]S. McKenna, S. Jabri, Z. Duric, H. Wechsler and A. Rosenfeld, “Tracking groups of people,” Comput. Vis. Image Understanding, vol. 80, pp. 42-56, 2000.
[15]C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder: Real-time tracking of the human body,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp. 780-785, 1997.
[16]S. T. Birchfield and S. Rangarajan, “Spatiograms versus histograms for region-based tracking,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1158-1163, 2005.
[17]N. Peterfreund, “The Velocity Snake,” Proc. IEEE Nonrigid and Articulated Motion Workshop, Virgin Islands, 1997.
[18]N. Peterfreund, “Robust tracking of position and velocity with Kalman snakes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 564–569, 2000.
[19]H. Fujiyoshi and A. J. Lipton, “Real-time human motion analysis by image skeletonization,” IEEE Workshop on Application of Computer Vision, pp. 15–21, 1998.
[20]D. S. Jang and H. I. Choi, “Active models for tracking moving objects, ” Pattern Recognition, vol. 33, no. 7, pp. 1135–1146, 2000.
[21]D. Comaniciu , V. Ramesh, P. Meer, “Kernel-based object tracking,” IEEE Transaction on Pattern Analysis and Machine Intelligence, pp. 564-577, 2003.
[22]P. KaewtraKulPong and R. Bowden, “An Adaptive Visual System for Tracking Low Resolution Color Targets,” in Proc. of British Machine Vision Conference, pp. 243-252, 2001.
[23]I. A. Karaulova, P. M. Hall, and A. D. Marshall, “A hierarchical model of dynamics for tracking people with a single video camera,” in Proc.British Machine Vision Conf, pp. 262–352, 2000.
[24]S. X. Ju, M. J. Black, and Y. Yaccob, “Cardboard people: a parameterized model of articulated image motion,” in Proc. IEEE Int. Conf. Automatic Face and Gesture Recognition, pp. 38–44. 1996.
[25]Microsoft Corp., Kinect, http://www.xboxkinection.com
[26]S. Murali and R. Girisha, “Segmentation of Motion Objects from Surveillance Video Sequences using Temporal Differencing Combined with Multiple Correlation,” in Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 472-477, 2009.
[27]J. L. Barron, D. J. Fleet, S. S. Beauchemin and T. A. Burkitt, “Performance of optical flow techniques,” International Journal of Computer Vision, pp. 43-77, 1994.
[28]M. Mueller, P. Karasev, I. Kolesov and A. Tannenbaum, “Optical Flow Estimation for Flame Detection in Videos,” IEEE Transactions on Image Processing, vol. 22, pp. 2786-2797, 2013.
[29]S. Y. Chen, S. Y. Ma, L. G. Chen, “Efficient moving object segmentation algorithm using background registration technique,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, pp. 577-586, 2002.
[30]Y. C. Chung, J. M. Wang, and S. W. Chen, “Progressive Background Image Generation,” in Proc. of 15th IPPR Conf. on Computer Vision, Graphics and Image Processing, pp. 858-865, 2002.
[31]L. Maddalena and A. Petrosino, “A Self-Organizing Approach to Background Substraction for Visual Surveillance Applications,” IEEE Transactions on Image Processing, vol.17, pp. 1168-1177, 2008.
[32]L. Bischof and R. Adams, “Seeded Region Growing,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, no. 6, pp. 641-647, 1994.
[33]M. M. S. J. Preetha, L. P. Suresh and M. J. Bosco, “Image segmentation using seeded region growing,” International Conference on Computing, Electronics and Electrical Technologies (ICCEET), pp. 576-583, 2012.
[34]C. Huang, Q. Liu and X. Li, “Image segmentation using seeded region growing,” Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp.533-536, 2010.
[35]周建佑,「基於LK演算法及Kinect的動態目標追蹤系統之研究」,國立中央大學,碩士論文,民國101年。
[36]顏妙純,「一個即時移動物偵測與追蹤的嵌入式系統」,國立中央大學,碩士論文,民國98年。
[37]張榮貴,「基於HPSO-TVAC演算法於多目標追蹤系統之研究」,國立中央大學,碩士論文,民國103年。
[38]簡隆至,「即時移動物體偵測及自動追蹤系統」,國立台灣科技大學,碩士論文,民國93年。
指導教授 鍾鴻源(Hung-Yuan Chung) 審核日期 2015-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明