博碩士論文 102521091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:34.204.176.189
姓名 賴信宇(Shin-yu Lai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 開發可攜式阻抗量測儀及其應用
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2020-6-30以後開放)
摘要(中) 本文提出一個可攜式電化學阻抗量測儀並介紹其應用,可攜式阻抗量測儀具有體積小、成本較低、方便攜帶、量測時間短及即時監控的優點,容易成為床邊檢測儀器,因此,可攜式阻抗量測儀在近幾年迅速成為電化學領域應用於量測的儀器對象。
本文可攜式阻抗量測儀以ATxmega32A4微處理器為核心,搭配運算放大器TLC2264ID的使用以及電子零件的配置完成硬體的設計;程式碼部分以C語言進行撰寫,燒錄則由AVR studio及燒錄器AVRISP mkII完成。本文可攜式阻抗量測儀重量大約120公克,具有四種量測模式:方波伏安法(SWV)、循環伏安法(CV)、計時電流法(CA)、線性掃描伏安法(LSV);量測範圍為:電壓±990 mV、電流0-50 μA;且在電路校正實驗中獲得和理論值及IM6ex數據值非常接近的實驗數據(誤差< ±2%)。
在應用方面,藉由多孔網印碳電極的表面改質來量測肌酐酸(Creatinine)與人類血清白蛋白(Human serum albumin, HSA),肌酐酸和微蛋白尿是慢性腎臟病兩個很重要的患病指標,在慢性腎臟病患體內不同濃度的肌酐酸和微蛋白尿可能由不同病程所導致。我們採用三種酵素Creatininase (EC 3.5.2.10)、Creatinase (EC 3.5.3.3)、Sarcosine Oxidase (EC 1.5.3.1)來製成電流式肌酐酸生物感測器,藉由酵素催化肌酐酸使之產生氧化還原反應而可以量到電化學訊號,藉由標準樣品的實驗我們可以了解其電流響應與濃度之間的關係,進而建立檢量線,在0-550 μM的量測區間下獲得高度相關的相關係數(R2=0.997),而在電流式肌酐酸生物感測器的特異性測試中,藉由三種可能出現在人體血液中的干擾物(抗壞血酸、對乙醯胺基酚、尿酸)的測試,對於干擾物所產生的干擾電流我們可以將其平均誤差藉由CA的方法降低到4%以下;而在微蛋白尿的實驗中,將人類血清白蛋白抗體(anti-HSA)固定在電極上形成抗體式多孔網印碳電極,藉由抗體與抗原之間的特異性吸附來捕捉微蛋白尿,純溶液系統在10-300 mg/L量測區間下同樣獲得高度相關的相關係數(R2=0.997),同樣地在特異性測試中也通過在人體尿液中可能出現的四種干擾物(抗壞血酸、葡萄糖、肌酐酸、尿酸)的測試,干擾物所產生的干擾電流其平均誤差藉由CA降低到4%以下。我們也進一步將抗體式多孔網印碳電極和電流式肌酐酸生物感測器應用在實際尿液及血液樣品中,在尿液樣品的檢測實驗中獲得了高度相關的相關係數(R2=0.951)且其線性結果和在標準樣品中所得到的結果也一致,在血液樣品的檢測實驗也獲得高度相關係數(R2=0.979),證明可攜式阻抗量測儀和生物感測器的搭配未來可以應用在實際樣品測量中。
摘要(英) This thesis introduces our development of a portable electrochemical measurement device and its applications. In recent years, the portable potentiostat has become a popular device used in electrochemical measurement. Conventional electrochemical workstations such as IM6ex (ZAHNER-elektrik GmbH & Co. KG, Germany) are expensive, bulky, and need professional operators. On the contrary, our device is portable, inexpensive, and easy to use. The core of the portable impedance measurement device is a 16-bit microprocessor ATxmega32A4 from Atmel. The microprocessor facilitates signal amplification and potential controlling by incorporating the operational amplifier TLC2264ID. The function of the microprocessor is programmed in C language in the integrated development environment provided by Atmel AVR Studio. Weighting 120 g, the portable impedance measurement device provides four measurement modes: square wave voltammetry (SWV), cyclic voltammetry (CV), Chronoamperometry (CA), and linear sweep voltammetry (LSV). The measurement range of the portable device is ±990 mV and 050 μA. Its accuracy was evaluated by comparing its measurement results with those measured with IM6ex as well as the theoretical values. The experiment results showed that the difference is within 2%. We further utilized our portable measurement device to detect creatinine and human serum albumin (HSA) with the screen-printed porous carbon electrode (SPPCE). Creatinine and HSA are important diagnostic indicators of chronic kidney disease (CKD). Different concentrations of creatinine and HSA in patients who suffer from CKD may refer to different levels of CKD. To catalyze creatinine into a redox reaction, we immobilized creatininase (EC 3.5.2.10), creatinase (EC 3.5.3.3), and sarcosine oxidase (EC 1.5.3.1) on the SPPCE to detect the electrochemical signal of creatinine. The creatinine detection results showed a high correlation coefficient (R2 = 0.99) in the calibration line. As for HSA detection, we immobilized anti-HSA on SPPCE to capture HSA by means of the specific adsorption between antibody and antigen. The HSA detection result also showed a high correlation coefficient (R2 = 0.997).
關鍵字(中) ★ 阻抗量測儀
★ 電化學
★ 肌酐酸
★ 人類血清白蛋白
關鍵字(英) ★ potentiostat
★ electrochemistry
★ creatinine
★ HSA
論文目次 論文電子檔授權書 i
紙本論文延後公開/下架申請書 ii
論文指導教師推薦書 iii
論文口試委員審定書 iv
中文摘要 v
Abstract vii
致謝 ix
目錄 x
圖目錄 xiv
表目錄 xx
第一章 前言 1
1-1 阻抗量測儀的介紹 1
1-1-1 阻抗量測儀的定義與應用 1
1-1-2 阻抗量測儀的運作原理 2
1-2 慢性腎臟病簡介與臨床上的檢測 6
1-2-1 肌酐酸的簡介與檢測 8
1-2-2 人類血清白蛋白的簡介與檢測 10
1-3 何謂電化學? 13
1-3-1 電化學量測方法 14
1-3-2 電化學感測器介紹 19
1-3-3 電化學感測器於醫學上的應用 20
1-4 文獻回顧 21
1-4-1 可攜式阻抗量測儀 21
1-4-2 生物感測器介紹 25
1-4-2-1 肌酐酸生物感測器 26
1-4-2-2 白蛋白生物感測器 31
第二章 研究動機與目的 38
2-1 研究動機 38
2-2 研究目的 39
第三章 實驗方法 40
3-1 可攜式阻抗量測儀的製作 40
3-1-1 硬體 40
3-1-1-1 電路板 40
3-1-1-2 零件 45
3-1-1-3 硬體組裝 53
3-1-2 軟體的撰寫與燒錄 54
3-1-3 可攜式阻抗量測儀檢測校正實驗 59
3-2 改良可攜式阻抗量測儀的製作 62
3-2-1 軟體的改良 62
3-2-2 改良可攜式阻抗量測儀檢測校正實驗 66
3-3 抗體式白蛋白生物感測器的製備 69
3-3-1 儀器與材料 69
3-3-2 製備步驟 73
3-4 抗體式白蛋白生物感測器的檢測實驗 75
3-4-1 標準樣品校正曲線 75
3-4-2 添加干擾物實驗 76
3-4-3 實際樣品測試 80
3-5 電流式電化學肌酐酸生物感測器的製備 82
3-5-1 儀器與材料 82
3-5-2 製備步驟 86
3-6 電流式電化學肌酐酸生物感測器的檢測實驗 88
3-6-1 標準樣品校正曲線 88
3-6-2 添加干擾物實驗 90
3-6-3 實際樣品測試 93
第四章 實驗結果與討論 95
4-1 可攜式阻抗量測儀的實現 95
4-1-1 硬體 95
4-1-2 軟體 97
4-1-3 電路測試結果 102
4-2 改良可攜式阻抗量測儀的實現 105
4-2-1 軟體改良 105
4-2-2 電路測試結果 109
4-3 微蛋白尿檢測實驗 112
4-3-1 標準樣品校正曲線 112
4-3-2 添加干擾物實驗 117
4-3-3 實際樣品測試 137
4-4 肌酐酸檢測實驗 143
4-4-1 標準樣品校正曲線 143
4-3-2 添加干擾物實驗 146
4-4-3 實際樣品測試 159
第五章 結論 163
第六章 未來展望 165
參考文獻 166
參考文獻 [1].Chun-Yueh Huang, Y.-C.H., and Hung-Yin Lin, Design of a Portable Multi-Channel Potentiostat for Biomolecule Sensors. International Journal of Science and Engineering, 2011. 1(1): p. 1-10.
[2].黃俊岳, 詹姆士湯姆森, 李玫樺, 劉濱達, 林宏殷 應用分子拓印生醫智慧材料於電化學生物感測器之尿液分析. 成大研發快訊文摘, 2013. 23(9).
[3].Pandiaraj, M., et al., A cost-effective volume miniaturized and microcontroller based cytochrome c assay. Sensors and Actuators A: Physical, 2014. 220: p. 290-297.
[4].Cruz, A.F., et al., A low-cost miniaturized potentiostat for point-of-care diagnosis. Biosens Bioelectron, 2014. 62: p. 249-54.
[5].Huang, C.Y., et al., Integrated potentiostat for electrochemical sensing of urinary 3-hydroxyanthranilic acid with molecularly imprinted poly(ethylene-co-vinyl alcohol). Biosens Bioelectron, 2015. 67: p. 208-13.
[6].Huang, C.Y., et al., A portable potentiostat for the bilirubin-specific sensor prepared from molecular imprinting. Biosens Bioelectron, 2007. 22(8): p. 1694-9.
[7].Levey, A.S. and J. Coresh, Chronic kidney disease. The Lancet, 2012. 379(9811): p. 165-180.
[8].Wen, C.P., et al., All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. The Lancet, 2008. 371(9631): p. 2173-2182.
[9].Mohabbati-Kalejahi, E., et al., A review on creatinine measurement techniques. Talanta, 2012. 97: p. 1-8.
[10].蔡建誠, 病理學, 華杏出版股份有限公司, 2006.
[11].Jaffe, M., Ueber den Niederschlag, welchen Pikrinsäure im normalen Harn erzeugt, und über eine neue Reaction des Kreatinins. Zeitschrift für Physiologische Chemie, 1886. 10: p. 391-400.
[12].Delanghe, J.R. and M.M. Speeckaert, Creatinine determination according to Jaffe--what does it stand for? NDT Plus, 2011. 4(2): p. 83-86.
[13].Anjal C. Sharma, et al., A General Photonic Crystal Sensing Motif - Creatinine in Bodily Fluids. J. Am. Chem. Soc., 2004. 126: p. 2971-2977.
[14].Appleton, S.N.a.H.D., Creatinine: a review. Clinical Chemistry, 1980. 26: p. 1119-1126.
[15].W. G. Gudert and G.E.H., Multicentre evaluation of an enzymatic method for creatinine determination using a sensitive colour reagent. J. Clin. Chem. Biochem., 1986. 24: p. 889-902.
[16].黃清意, 賴世偉, 林正介, 蛋白尿與微量白蛋白尿. 基層醫學第26卷第6期: p. 163-167.
[17].洪堯民, 蛋白尿:腎臟病的表徵之一. 高雄榮總醫訊第3卷第12期【2000-12】.
[18].Bresadola, M., Medicine and science in the life of Luigi Galvani. Brain Research Bulletin. 46(5): p. 367–380.
[19].吳浩青, 李永舫, 電化學動力學. 2001-02-01: 科技圖書.
[20].Instruments, G., Basics of Electrochemical Impedance Spectroscopy. Gamry Instruments Application Note.
[21].Andrienko, D., cyclic voltammetry. 2008.
[22].Sverre Grimnes, Ø.G.M., Bioimpedance and bioelectricity basics. Academic Press, 2008.
[23].Xu, L., et al., Dendrimer-encapsulated Pt nanoparticles/polyaniline nanofibers for glucose detection. Journal of Applied Polymer Science, 2008. 109(3): p. 1802-1807.
[24].Brusciotti, F. and P. Duby, Cyclic voltammetry study of arsenic in acidic solutions. Electrochimica Acta, 2007. 52(24): p. 6644-6649.
[25].Nguyen, P.K. and S.K. Lunsford, Electrochemical response of carbon paste electrode modified with mixture of titanium dioxide/zirconium dioxide in the detection of heavy metals: lead and cadmium. Talanta, 2012. 101: p. 110-21.
[26].Ly, S.Y., Detection of dopamine in the pharmacy with a carbon nanotube paste electrode using voltammetry. Bioelectrochemistry, 2006. 68(2): p. 227-31.
[27].Pemberton, R.M. and J.P. Hart, Electrochemical behaviour of triclosan at a screen-printed carbon electrode and its voltammetric determination in toothpaste and mouthrinse products. Analytica Chimica Acta, 1999. 390: p. 107-115.
[28].Forsberg G, et al., Determination of arsenic by anodic stripping voltammetry and differential pulse anodic stripping voltammetry. Analytical Chemistry, 1975. 47: p. 1586–1592.
[29].Chung, J.W., et al., Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sensors and Actuators B: Chemical, 2005. 111-112: p. 416-422.
[30].Jha, R. and A.K. Sharma, Design of a silicon-based plasmonic biosensor chip for human blood-group identification. Sensors and Actuators B: Chemical, 2010. 145(1): p. 200-204.
[31].Fang, C., J. He, and Z. Chen, A disposable amperometric biosensor for determining total cholesterol in whole blood. Sensors and Actuators B: Chemical, 2011. 155(2): p. 545-550.
[32].Li, Y.S., et al., Immobilized enzymatic fluorescence capillary biosensor for determination of sulfated bile acid in urine. Biosens Bioelectron, 2008. 24(4): p. 538-44.
[33].Moore, E., et al., Monitoring of cell growth in vitro using biochips packaged with indium tin oxide sensors. Sensors and Actuators B: Chemical, 2009. 139(1): p. 187-193.
[34].Honeychurch, K.C., M.R. O′Donovan, and J.P. Hart, Voltammetric behaviour of DNA bases at a screen-printed carbon electrode and its application to a simple and rapid voltammetric method for the determination of oxidative damage in double stranded DNA. Biosens Bioelectron, 2007. 22(9-10): p. 2057-64.
[35].Rowe, A.A., et al., CheapStat: an open-source, "do-it-yourself" potentiostat for analytical and educational applications. PLoS One, 2011. 6(9): p. e23783.
[36].王信雄, 如何利用阻抗分析儀量測被動元件. 國立虎尾科技大學專題演講.
[37].Hickling, A., A simple potentiostat for general laboratory use. Electrochimica Acta, 1961. 5(3): p. 161-168.
[38].D. Shaw, A.M.E., A transistorized potentiostat system for corrosion studies. Corrosion Science, 1969. 5(6): p. 413-424.
[39].Tang Fang, M.M., Dermot Diamond , Malcolm R. Smyth Development of a computer controlled multichannel potentiostat for applications with flowing solution analysis. Analytica Chimica Acta, 1995. 305: p. 347-358.
[40].John C. Fidler, W.R.P., James P. Bobis, A Potentiostat Based on a Voltage-Controlled Current Source for Use with Amperometric Gas Sensors. IEEE TRANSACTIONS ON INSTRUMENTATlON AND MEASUREMENT, 1992. 41(2): p. 308-310.
[41].SARAJU P. MOHANTY, E.K., Biosensors: a tutorial review. IEEE POTENTIALS, 2006. 25: p. 35-40.
[42].Pankaj Vadgama, P.W.C., Biosensors: recent trends. ANALYST, 1992. 117: p. 1657-1670.
[43].Ohira, S., A.B. Kirk, and P.K. Dasgupta, Automated measurement of urinary creatinine by multichannel kinetic spectrophotometry. Anal Biochem, 2009. 384(2): p. 238-44.
[44].Alexander Benkert, et al., Development of a Creatinine ELISA and an Amperometric Antibody-Based Creatinine Sensor with a Detection Limit in the Nanomolar Range. Anal. Chem., 2000. 72: p. 916-921.
[45].M. Meyerhoff and G.A. Rechnitz, An activated enzyme electrode for creatinine. Analytica Chimica Acta, 1976. 85(2): p. 277-285.
[46].Yoda, T.T.a.K., Multi-Enzyme Membrane Electrodes for Determination of Creatinine and Creatine in Serum. CLIN.CHEM., 1983. 29(1): p. 51-55.
[47].Bernd Tombach, J.S., Fritz Matzkies, Roland M. Schaefer, Gabriele C. Chemnitius, Amperometric creatinine biosensor for hemodialysis patients. Clinica Chimica Acta 312. 2001: p. 129-134.
[48].曾志明, 鍾協訓, 液體電化學感測器的介紹與應用. CHEMISTRY, THE CHINESE CHEM. SOC., TAIPEI. 59(2): p. 201-206.
[49].Jae Ho Shin, Y.S.C., Han Jin Lee, Sung Hyuk Choi, Jeonghan Ha, In Jun Yoon, Hakhyun Nam, and Geun Sig Cha, A Planar Amperometric Creatinine Biosensor Employing an Insoluble Oxidizing Agent for Removing Redox-Active Interferences. Anal. Chem. 2001(73): p. 5965-5971.
[50].Nien-Hsuan Chou, J.-C.C., Member, IEEE, Tai-Ping Sun, Shen-Kan Hsiung, All Solid-State Potentiometric Biosensors for Creatinine Determination Based on pH and Ammonium Electrodes. IEEE SENSORS JOURNAL. 2009(9): p. 665-672.
[51].Ging-Ho Hsiue, P.-L.L., Jyh-Chern Chen, Multienzyme- Immobilized Modified Polypropylene Membrane for an Amperometric Creatinine Biosensor. Journal of Applied Polymer Science. 2004(92): p. 3126-3134.
[52].Farabee, M.J., LYMPHATIC SYSTEM AND IMMUNITY. On-Line Biology Book.
[53].Yu, Y., et al., A novel electrochemical immunosensor for Golgi Protein 73 assay. Electrochemistry Communications, 2014. 42: p. 6-8.
[54].Wang, L., et al., Enzyme-free signal amplification for electrochemical detection of Mycobacterium lipoarabinomannan antibody on a disposable chip. Biosens Bioelectron, 2012. 38(1): p. 421-4.
[55].Hedstrom, M., I.Y. Galaev, and B. Mattiasson, Continuous measurements of a binding reaction using a capacitive biosensor. Biosens Bioelectron, 2005. 21(1): p. 41-8.
[56].Yeh-Hsing Lao, L.-C.C., Yi-Chung Chang, Chun-Wei Chi, Konan Peck Applications of Microarray in Aptamer Study. 國家實驗研究院儀器科技研究中心 科儀新知, 2009. 172: p. 95-102.
[57].吴崔晨, Application of Aptamers in Biomedicine. PROGRESS IN CHEMISTRY, 2010. 22(8).
[58].Lee, C.Y., et al., Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification. Biosens Bioelectron, 2013. 39(1): p. 133-8.
[59].Degefa, T.H., et al., Aptamer-based electrochemical detection of protein using enzymatic silver deposition. Electrochimica Acta, 2009. 54(27): p. 6788-6791.
[60].Rikhtegaran Tehrani, Z., et al., Development of an integrase-based ELISA for specific diagnosis of individuals infected with HIV. J Virol Methods, 2015. 215-216C: p. 61-66.
[61].Vashist, S.K., E.M. Schneider, and J.H. Luong, Rapid sandwich ELISA-based in vitro diagnostic procedure for the highly-sensitive detection of human fetuin A. Biosens Bioelectron, 2015. 67: p. 73-8.
[62].AVR, ATXmega32A4 datasheet, A. Corporation, Editor. 2012, Atmel. p. 4.
[63].Instruments, T., TLC2264ID datasheet, T. Instruments, Editor. 1997, Texas Instruments.
[64].FT232RL datasheet, F.T.D. International, Editor. 2010, Future Technology Devices International, FTDI.
[65].陳錦輝, C語言初學指引. 4 ed. 2011: 簡女娜, 博碩文化有限公司.
[66].Atmel, Application note, AVR1300: Using the XMEGA ADC, Atmel, Editor.
[67].Atmel, Application note, AVR1301: Using the XMEGA DAC, Atmel, Editor.
[68].Atmel, Application note, AVR1309: Using the XMEGA SPI, Atmel, Editor.
[69].Atmel, Application note, AVR1307-Using the XMEGA USART, Atmel, Editor.
[70].Stang, P., Character LCD driver for HD44780/SED1278 displays(usable in mem-mapped, or I/O mode), P. Stang, Editor. 2000, GNU Public License.
[71].林昱夆, Screen-printing porous carbon based immunosensor for human serum albumin detection, in Electrical Engineering. 2014, 國立中央大學.
[72].Omidfar, K., et al., Development of urinary albumin immunosensor based on colloidal AuNP and PVA. Biosens Bioelectron, 2011. 26(10): p. 4177-83.
[73].Putnam, D.F., Composition and Concentrative Properties of Human Urine. MCDONNELL DOUGLAS ASTRONAUTICS COMPANY, 1971.
[74].H, M.H.Y.Y.Y.M.O., Voltammetric behaviors of dopamine and ascorbic acid at a glassy carbon electrode anodized in 1,ω-alkenediol. Analytical sciences, 1995. 11: p. 947-952.
[75].陳柏任, 多孔網印碳漿電極用於肌酐酸感測. 國立中央大學電機系碩士論文, 2014.
[76].Edward T. Bope, R.D.K., Conn′s Current Therapy 2012. Elsevier Health Sciences, 2012.
[77].Barbara H. Esteridge, A.P.R., Norma J. Walters, bara H. Esteridge, A.P.R., Norma J. Walters, Basic Medical Laboratory Techniques. Cengage Learning, 2000.
[78].Harris, J.R., Ascorbic Acid: Biochemistry and Biochemical Cell Biology. Springer, 1996. 25.
[79].王璽傑, 平面式抗壞血酸微電極感測器之製備. 國立雲林科技大 學光電工程研究所碩士論文 2008.
[80].林良憲, 利用奈米碳管與電化學預處理修飾網版印刷碳電極選擇性偵測尿酸之研究. 國立中山大學化研究所碩士論文 2010.
[81].吳孟潔, 乙醯氨酚之電氧化研究. 國立屏東科技大學環境工程與科學系碩士位論文, 2011.
[82].Yadav, S., A. Kumar, and C.S. Pundir, Amperometric creatinine biosensor based on covalently coimmobilized enzymes onto carboxylated multiwalled carbon nanotubes/polyaniline composite film. Anal Biochem, 2011. 419(2): p. 277-83.
[83].Tombach, B., et al., Amperometric creatinine biosensor for hemodialysis patients. Clinica Chimica Acta, 2001. 312: p. 129-134.
[84].Reddy, K.K. and K.V. Gobi, Artificial molecular recognition material based biosensor for creatinine by electrochemical impedance analysis. Sensors and Actuators B: Chemical, 2013. 183: p. 356-363.
[85].Mustafa Ozmena, E.M., Imren Hatay Patira, Mevlut Bayrakcib, Combined voltammetric and spectroscopic investigation of binding interaction between nifedipine and human serum albumin on polyelectrolyte modified ITO electrode. Electrochimica Acta, 2013. 111: p. 535-542.
[86].Eggins, B., Biosensors an introduction. John Wiley & son, 1996.
[87].Cheng-Yu Lee, K.-Y.W., Hsiu-Li Su, Huan-Yi Hung, You-Zung Hsieh, Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification. Biosensors and Bioelectronics. 39(1): p. 133-138.
[88].Chao Xu, D.H., Liping Zeng, Shenglian Luo, A study of adsorption behavior of human serum albumin and ovalbumin on hydroxyapatite/chitosan composite. Colloids and Surfaces B: Biointerfaces, 2009. 73: p. 360-364.
[89].Heli, H., et al., Adsorption of human serum albumin onto glassy carbon surface - Applied to albumin-modified electrode: Mode of protein - ligand interactions. Journal of Electroanalytical Chemistry, 2007. 610(1): p. 67-74.
[90].Zinchenko, O.A., et al., Application of creatinine-sensitive biosensor for hemodialysis control. Biosens Bioelectron, 2012. 35(1): p. 466-9.
[91].Kwakye, S. and A. Baeumner, An embedded system for portable electrochemical detection. Sensors and Actuators B: Chemical, 2007. 123(1): p. 336-343.
指導教授 蔡章仁(Jang-zern Tsai) 審核日期 2015-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明