博碩士論文 102521099 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:54.85.162.213
姓名 李忠穎(Chung-Ying Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於 5-11 GHz寬頻低雜訊放大器與5 GHz/11 GHz雙頻低雜訊放大器之研製
(Implementation on Wideband Low Noise Amplifier for 5-11 GHz and 5 GHz/11 GHz Dual Band Low Noise Amplifier Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 此論文採用tsmcTM CMOS 0.18 μm 製程以及 UMC CMOS 0.18 μm 製程設計5-11 GHz寬頻低雜訊放大器及5 GHz/11 GHz雙頻低雜訊放大器,研究的方向以寬頻、雙頻為設計目標。
第一顆電路使用電流再利用的技術使得電路能操作在低功耗條件以及shunt peaking的技術來進行設計,輸入端採用T型匹配加上RC回授來進行匹配。本電路增益為12.67 dB,3-dB頻寬從3.9 GHz-14.7 GHz,雜訊最小值為4.04 dB,P1dB量測結果為-13 dBm,IIP3則為-3 dBm,量測功耗為7.92 mW,晶片面積為1.114×0.769 mm2。
第二顆電路使用兩級串聯,第一級採用疊接的架構,第二級採用回授的架構,使用疊接架構的好處在於提升增益及隔離度,為了要減少電感數量,電路使用到三組變壓器的設計。本電路增益為14.5 dB,3-dB頻寬從4.9 GHz-11.3 GHz,雜訊最小值為3.18 dB,P1dB量測結果為-16 dBm,IIP3則為-6 dBm,功耗為6.6 mW,晶片面積為0.83×0.95 mm2。
第三顆電路使用兩級串聯且皆為疊接的架構,並且在負載端使用shunt peaking的技術,在輸入以及級間匹配採用變壓器來進行設計,此電路雙頻效果由輸入匹配以及級間帶拒濾波器所造成。本電路增益為15.1 dB/10.7 dB,3-dB頻寬從4.75 GHz-6.15 GHz/ 9.45 GHz-12.4 GHz,P1dB為-18 dBm/-12 dBm,IIP3為-8dBm/-3 dBm分別在5.5 GHz及11 GHz,雜訊最低為4.3 dB/5.8 dB,量測功耗為9.6 mW,晶片面積1.31×0.9795 mm2。
摘要(英) The primary target of this thesis is to design wideband and dual band low noise amplifier. There are three different circuit designs which are developed in tsmcTM CMOS 0.18 μm and UMC CMOS 0.18 μm.
The first circuit is a wideband LNA which employs current-reused and shunt peaking techniques to reduce the power consumption. The input matching adopts T-type and RC feedback to achieve impedance matching. The proposed LNA achieves a gain of 12.67 dB over a 3-dB bandwidth from 3.9 to 14.7 GHz and a minimum noise figure of 4.04 dB. The measured P1dB is -13 dBm and the IIP3 is -3 dBm. The power consumption of the LNA is 7.92 mW. The chip size is 1.114×0.769mm2.
The second circuit is a two-stage wideband low noise amplifier. The first stage used cascade topology to enhance the performance of both gain and isolation. Three transformers instead of individual inductor are used to save the chip area. The proposed LNA achieves a gain of 14.5 dB over a 3-dB bandwidth from 4.9 to 11.3 GHz and a minimum noise figure of 3.18 dB. The measured P1dB is -16 dBm and the IIP3 is -6 dBm. The power consumption is 6.6 mW. The chip size is 0.83×0.95 mm2.
The final LNA is a dual band low noise amplifier with cascade and shunt peaking topology. The input and inter stage matching networks are realized by transformers to obtain dual band responses which is a bandstop filter between the two pass bands. The proposed LNA achieves the gains of 15.1 dB/10.7 dB over a 3-dB bandwidths from 4.75 to 6.15 GHz/9.45 to 12.4 GHz. The P1dB of dual band LNA are -18 dBm /-12 dBm and the IIP3 are -8 dBm/-3dBm at 5.5 GHz and 11 GHz. The minimum NFs are 4.3 dB/5.8 dB, respectively. The power consumption is 9.6 mW and the chip size is 1.31×0.9795 mm2.
關鍵字(中) ★ 低雜訊放大器
★ 寬頻
★ 雙頻
關鍵字(英) ★ Low Noise Amplifier
★ wideband
★ dualband
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 1
1-3 章節介紹 2
第二章 應用於5-11 GHz電流再利用之寬頻低雜訊放大器 3
2-1 電路架構與分析 3
2-2 電路模擬與量測結果 13
2-3 結果與討論 21
第三章 應用於5-11 GHz寬頻低雜訊放大器 23
3-1 電路架構與分析 23
3-1-1 變壓器介紹 27
3-1-2 阻抗匹配設計 29
3-2 電路模擬與量測結果 42
3-3 結果與討論 47
第四章 應用於5 GHz/11GHz雙頻低雜訊放大器 49
4-1 電路架構與分析 49
4-1-1 變壓器介紹與分析 50
4-2 電路模擬與量測結果 62
4-3 結果與討論 67
第五章 結論 69
5-1 結論 69
5-2 未來方向 70
參考文獻 71
參考文獻 [1] Amitabha Ghosh, “Can Mmwave Wireless Technology meet the future capacity crunch” ,invited speaking in IEEE International Conference on Communications (ICC 2013), Budapest, Hungary, 9-13 Jun., 2013.
[2] Wonil Roh, “Performances and Feasibility of mmWave Beamforming Prototype for 5G Cellular Communications” ,invited talk in IEEE International Conference on Communications (ICC 2013), Budapest, Hungary, 9-13 Jun., 2013.
[3] Yoshihisa Kishiyama, “Future Radio Access for 5G” , invited talk in The International Workshop on Cloud Cooperated Heterogeneous Networks, Osaka, Japan, 23 Oct., 2013.
[4] Y.-J. Lin, S.S.H.Hsu, J.-D. Jin, and C. Y. Chan, “A 3.1–10.6 GHz Ultra-Wideband CMOS Low Noise Amplifier With Current-Reused Technique,” IEEE Micro. Wireless Compon. Lett., vol. 17, no. 3, pp. 232-234, Mar. 2007.
[5] J.-Y Lee, H.-K. Park, et al., “;Low Power UWB LNA with common-gate and current reuse technique,” IET Microw. Antennas Propag., 2012, vol. 6, no 7, pp. 793-799.
[6] C.-I. Chien, Y.-C. Wang, K.-H. Chien, H-K Chiou, “A low power, wide bandwidth k-band transformer feedback low noise amplifier with current-reused topology,” IEEE Asia-Pacific Microwave Conference (APMC) vol., no., pp. 417-419, 4-7 Nov. 2014.
[7] S.S. Mohan, M.D.M. Hershenson, S.P. Boyd, and T.H, Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits, vol. 35, no.3, pp. 346-355, Mar 2000.
[8] Y.-S Lin, C.-C Wang, G.-L Lee, C-C. Chen, “High-Performance Wideband Low-Noise Amplifier Using Enhanced π -Match Input Network,” IEEE Micro. Wireless Compon. Lett., vol. 24, no. 3, pp. 200-202, Ma 2014.

[9] G. Sapone and G. Palmisano, “A 3-10-GHz low-power CMOS low-noise amplifier fo ultra-wideband communication,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 3,pp. 678-689, Mar. 2011.
[10] Y.-S. Lin, J.-F Chang, and S.-S. Lu, “Analysis and design of CMOS distributed amplifier using inductively peaking cascaded gain cell for UWB system,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 10, pp. 2513-2524, Oct. 2011.
[11] P. Andreani and H. Sjoland, “Noise optimization of an inductively degenerated CMOS low noise amplifier,” IEEE Trans. Circuits Syst. II, Analog. Digit. Signal Process., vol. 48, no. 9, pp. 835-841, Sep. 2001.
[12] J.-S Goo, H.-T. Ahn, D. J. Ladwing, Y. Zhiping, T.-H. Lee, and R.W. Dutton, “A noise optimization technique for integrated low-noise amplifier,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 994-1002, Aug. 2002.
[13] B. Razavi, RF Microelectronics, 2nd ed , Prentice Hall, 2011.
[14] J. R. Long, “Monolithic transformer for silicon RF IC design,” IEEE J. Solid-State Circuit, vol. 35, no. 9, pp. 1368-1382, Sep. 2000.
[15] N.-M Neihart, J. Brown, and X. Yu, “A dual-bnad 2.45/6 GHz CMOS LNA utilizing a dual-resonant transformer-based matching network,” IEEE Trans. Circuits Sust. I, Reg. Papers., vol. 59, no. 8, pp. 1743-1751, Aug. 2012.
[16] X. Yu and N. M. Neihart, “Analysis and design of a reconfigurable multimode low-noise amplifier utilizing a multitap transformer,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 3, pp. 1236-1246, Mar. 2013.
[17] C.C Huang, Z.-Y Huang, Y.-C Wang, Y.-T Hung, and M.-P Chen, “0.18um CMOS Low-Noise Amplifier with two 2nd-order notch filters for Ultra-Wideband Wireless Receiver,” IEEE Internation Workshop on Radio-Frequency Intergration Technology (RFIT) , vol., no., pp. 38-41, Dec. 2007.
[18] L. H. Lu et al., “A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp.685-687, Oct. 2005
[19] David M. Pozar, Microwave Engineering, 4th ed , Wiely, 2011.
[20] 陳欣瑋, "應用於 UWB/V 頻段寬頻 CMOS 低雜訊放大器之研究," 碩士論文, 電機工程學系, 國立中央大學, 民國 101年.
[21] 邱怡菁, "應用於 K/V 頻段之低功耗 CMOS 低雜訊放大器之研究," 碩士論文, 電機工程學系, 國立中央大學, 民國 102 年.
[22] 簡菁儀, "應用於 K頻段射頻接收雞隻寬頻低功耗CMOS低雜訊放大器," 碩士論文, 電機工程學系, 國立中央大學, 民國 103 年.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2015-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明