博碩士論文 102521102 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:44.210.85.190
姓名 紀建榮(Jien-Rong Ji)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具自動增益控制之高效率高功率寬頻放大器及Doherty功率放大器之研製
(Design of High Efficiency High Power Broadband Amplifiers with Automatic Gain Control and Doherty Power Amplifier)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在通訊系統發射端中,功率放大器是相當重要的元件,其效率高低、頻寬及能否提供穩定輸出都是在發射端的重要主題。本論文針對功率放大器效率及回退功率的效率提升,加上考量現實發射端必須提供一個穩定輸出功率,應用了自動增益控制迴路於功率放大器之研製。
第二章為使用電抗補償之甚高頻 (VHF) E類功率放大器設計與實作,並使用Freescale公司製造之橫向擴散金氧半場效應電晶體 (LDMOS) 實作10 W及100 W寬頻功率放大器,飽和功率分別可達12 W及130 W,3 dB比例頻寬分別為45–175 MHz (123%) 與75–135 MHz (60%),頻寬內最高效率分別在130 MHz可達到63% 及110 MHz達到76%,而頻寬內最高功率增益分別在105 MHz可達20.8 dB與100 MHz 達20.4 dB,當改變10 W功率放大器汲極直流電壓從20–50 V時,其增益控制範圍為16.6–21.4 dB (4.8 dB)。
第三章則延續第二章,將自動增益控制迴路應用於第二章所設計之功率放大器,以降低輸出功率受到輸入功率、頻率及溫度變動的影響,第三章中所設計的兩個迴路分別可以穩定輸出超過10 W與100 W,其輸入動態範圍分別在105 MHz為4.5 dB與120 MHz 為4.4 dB,而頻寬分別為90–130 MHz及100–130 MHz。
第四章則是介紹了 Doherty 功率放大器之設計,並使用橫向擴散金氧半場效應電晶體 (LDMOS) 實現了一個10 W 甚高頻(VHF) Doherty 功率放大器,在180 MHz 所量測之最高效率可達69%,6–dB回退功率之效率可達到41%,3 dB比例頻寬則可達50% (130–220 MHz),頻寬內最高功率增益可達21.6 dB (180 MHz),在180 MHz 增益1 dB 壓縮點輸出功率可達30.8 dBm,三階交調截取點 (Third-order Intercept Point) 輸出功率可達46.6 dBm。同時第四章也使用了0.15-μm 假晶式高速電子遷移率電晶體 (PHEMT) 積體電路製程實現一個於 K 頻段之 Doherty 功率放大器,最高小訊號增益達7 dB於26 GHz,量測到最高功率為114.8 mW,在25.8 GHz最高效率為16%。由於在 K 頻段之 Doherty 功率放大器進行電磁模擬時有地方考慮未周全,因此量測與模擬有落差,其原因亦在第四章中說明。
最後於第五章總結本篇論文所提出之電路與未來研究方向。
摘要(英) The power amplifier is a critical building block in the RF transmitter. The efficiency、bandwidth and the ability of providing the stable output are essential issues for the power amplifiers. This thesis focuses on the efficiency and back-off power efficiency enhancement and the power amplifiers with automatic gain control loop to provide a stable output.
The reactance compensation method is applied to the VHF class-E power amp lifers in chapter 2, and two 10 W and a 100 W broadband power amplifiers were implemented using Freescale laterally diffused metal oxide semiconductor (LDMOS) transistors. The 3 dB fractional bandwidth of 10 W and 100 W power amplifiers reaches 45–175 MHz (123%) and 75–135 MHz (60%) respectively, and the highest efficiency of 10 W and 100 W class-E power amplifiers in the 3 dB fractional bandwidth is 63% at 130 MHz and 76% at 110 MHz respectively, and the highest power gain in the 3 dB fractional bandwidth is 20.8 dB at 105 MHz and 20.4 dB at 100 MHz Gain control range of 10 W class E power amplifier is from 16.6 to 21.4 dB when DC drain voltage varying from 20–50 V.
In chapter 3, the automatic gain control loop is applied to the power amplifiers implemented in chapter 2. The automatic gain control loop can alleviate the effect of input power variation on the output power. The output power of the loops are over 10 W and 100 W respectively, and the input dynamic ranges are 4.5 dB at 105 MHz and 4.4 dB at 120 MHz respectively.
In chapter 4, the design of Doherty power amplifier is introduced, and a 10 W VHF Doherty power amplifier is implemented by using laterally diffused metal oxide semiconductor (LDMOS). The highest efficiency of the power amplifier measured at 180 MHz reaches 69%, and the efficiency at 6–dB back-off power is 41%, and the 3 dB fractional bandwidth is 50% (130–220 MHz), and the highest power gain in the 3 dB fractional bandwidth is 21.6 dB at 180 MHz, and the output power at 1 dB gain compression point is 30.8 dBm (at 180 MHz), and the output power at third-order intercept point is 46.6 dBm. A K-band Doherty power amplifier is also implemented by PHEMT technology in chapter 4, and the highest small signal gain reaches 7 dB at 26 GHz, but the negligence during the EM simulation results in the difference between simulation and measurement results, and the difference will be discussed in chapter 4.
Lastly, the future work and the conclusions are made in chapter 5.
關鍵字(中) ★ E類功率放大器
★ 高功率放大器
★ 寬頻功率放大器
★ 自動增益控制
★ Doherty功率放大器
關鍵字(英) ★ class-E power amplifier
★ high power amplifer
★ broadband power amplifier
★ automatic gain control
★ Doherty power amplifer
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XV
第1章 緒論 1
1.1 研究動機及背景 1
1.2 現況研究及發展 2
1.3 貢獻 3
1.4 論文架構 3
第2章 寬頻E類放大器 5
2.1 簡介 5
2.2 E類放大器 [33] 6
2.2.1 傳統E類放大器 6
2.2.2 使用電抗補償之寬頻E類放大器 15
2.3 電路設計與實作 26
2.3.1 甚高頻10 W E類功率放大器 26
2.3.2 甚高頻100 W E類功率放大器 36
2.4 總結 49
第3章 自動增益控制迴路 50
3.1 簡介 50
3.2 自動增益控制迴路分析與模擬 52
3.2.1 自動增益控制迴路穩定時間分析 52
3.2.2 使用線性可變增益放大器之穩定時間分析與模擬 55
3.2.3 使用指數可變增益放大器之穩定時間分析與模擬 56
3.2.4 所提出電路之轉移函數及穩定度分析與模擬 58
3.2.5 所提出電路之時域模擬 61
3.3 迴路元件介紹 64
3.3.1 自動增益控制迴路系統配置 64
3.3.2 可變增益放大器 65
3.3.3 方向耦合器 67
3.3.4 功率檢測器 71
3.3.5 比較器與緩衝放大器 73
3.3.6 明緯電源供應器 75
3.4 電路實作與量測 76
3.5 總結 80
第4章 Doherty 功率放大器 81
4.1 簡介 81
4.2 Doherty 功率放大器運作原理 83
4.3 電路設計與量測結果 86
4.3.1 設計流程 86
4.3.2 使用LDMOS之10 W甚高頻Doherty功率放大器 88
4.3.3 使用穩懋 E/D-mode之K頻段Doherty功率放大器 103
4.4 總結 111
第5章 結論 113
參考文獻 115
參考文獻 [1] A. K. Goel and A. Kalia, “Comparison of NMOS, CMOS and GaAs technologies,” Circuits and Systems, Proceedings of the 32nd Midwest Symposium, Champaign, IL, 1989, pp. 1238–1241 vol.2.
[2] P. J. Zampardi, “Will CMOS amplifiers ever kick-GaAs?,” in Proc. IEEE Custom Integr. Circuits Conf., 2010, pp. 1–4.
[3] P. J. Zampardi, “Performance and modeling of Si and SiGe for power amplifiers,” in SiliconMonolithic Integr. Circuits in RF Syst., 2007, pp. 13–17.
[4] J. Deng, P. Gudem, L.E. Larson, P. M. Asbeck, “A high average-efficiency SiGe HBT power amplifier for WCDMA handset applications,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 2, pp. 529–537, Feb. 2005.
[5] V. Ramachandran, A. J. Joseph, J. B. Johnson, M. D. Gallagher, P.-O. Brandt, L. Tilly, D. R. Greensberg, W. E. Ansley, U. Gogineni, D. L. Harame, and J. S. Dunn, “A fully-manufacturable 0.5 um SiGe BiCMOS technology for wireless power amplifier applications,” in Proc. 32nd Eur. Microwave Conf. GAAS/EuMC 5: High Linearity Pas II, 2002, pp. 303–306.
[6] C. T. Burns, A. Chang, and D. W. Runton, “A 900 MHz, 500 W Doherty power amplifier using optimized output matched Si LDMOS power transistors,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 1557–1580.
[7] A. Tombak, D. C. Dening, M. S. Carroll, J. Costa, and E. Spears, “High-efficiency cellular power amplifiers based on a modified LDMOS process on bulk silicon and silicon-on-insulator substrates with integrated power management circuitry,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1862–1869, Jun. 2012.
[8] N. O. Sokal and A. D. Sokal, “Class E-A new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, no. 3, pp. 168–176, Jun. 1975.
[9] R. A. Beltran, "Transmission-line broadband GaN FET class-E power amplifier," in IEEE MTT-S Int. Microw. Symp. Dig. (IMS), San Francisco, CA, 2016, pp. 1–4.
[10] C. Rong, Y. Xu, M. Xia, Y. Luo and R. Ou, "Broadband class E GaN power amplifier design in S band with low-pass match," Communication Problem-Solving (ICCP), 2014 IEEE International Conference, Beijing, 2014, pp. 372–375.
[11] W. H. Doherty, “A new high efficiency power amplifier for modulated waves,” Proc. IRE, vol. 24, Sep. 1936, pp. 1163–1182.
[12] J. C. Park, J. G. Yook, Y. D. Kim and C. H. Lee, “Dual-band switching Doherty power amplifier using phase shifter composed of PIN diode,” Microwave Integrated Circuits Conference (EuMIC), 2011 European, Manchester, 2011, pp. 300–303.
[13] M. Hayakawa, K. Shiikuma, and T. Kaneko, “A total bandwidth expanded dual-band GaN Doherty PA toward the LTE-A carrier aggregation application,” IEEE Compound Semi. IC Symp. (CSICS), Oct. 2013, pp. 1–4
[14] X. A. Nghiem, J. Guan, and R. Negra, “Design of a broadband three-way sequential Doherty power amplifier for modern wireless communications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2014 pp. 1–4
[15] D. Kang, D. Kim, Y. Cho, J. Kim, B. Park, C. Zhao, and B. Kim, “1.6–2.1 GHz broadband Doherty power amplifiers for LTE handset applications,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 5–10, 2011, pp. 1–4
[16] J. H. Qureshi et al., “A 700-W peak ultra-wideband broadcast Doherty amplifier,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2014, pp. 1–4
[17] S. Watanabe et al., “A Broadband Doherty Power Amplifier without a Quarter-Wave Impedance Inverting Network,” Proc. APMC 2012, pp. 361–363, December 2012.
[18] D.-T. Wu and S. Boumaiza, “A modified Doherty configuration for broadband amplification using symmetrical devices,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 10, pp. 3201–3213, Oct. 2012.
[19] E. Kaymaksut, D. Zhao, and P. Reynaert, “E-band transformer-based doherty power amplifier in 40 nm CMOS,” in Proc. RFIC, Jun. 2014, pp. 167–170.
[20] E. Kaymaksut, D. Zhao, and P. Reynaert, “Transformer-based Doherty power amplifiers for mm-wave applications in 40-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1186–1192, Apr. 2015.
[21] K.-J. Cho, J.-H. Kim, and S. Stapleton, “A highly efficient Doherty feedforward linear power amplifier for W-CDMA base-station applications,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 1, pp. 292–300, Jan. 2005.
[22] J. Kim, J. Cha, I. Kim, and B. Kim, “Optimum operation of asymmetrical-cells-based linear Doherty power Amplifiers-Uneven power drive and power matching,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 5, pp. 1802–1809, May 2005.
[23] W. Chen, S. Zhang, Y. Liu, Y. Liu, and F. Ghannouchi, “A concurrent dual-band uneven Doherty power amplifier with frequency-dependent input power division,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 2, pp. 552–561, Feb. 2014.
[24] E. Kaymaksut and P. Reynaert, “Transformer-based uneven Doherty power amplifier in 90 nm CMOS for WLAN applications,” IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1659–1671, Jul. 2012.
[25] V. Camarchia et al., “The Doherty power amplifier: Review of recent solutions and trends,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 559–571, Feb. 2015
[26] O. Jeon, R.M. Fox, B.A. Myers; “Analog AGC circuitry for a CMOS WLAN receiver”; IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2291–2300, Oct. 2006.
[27] G. S. Sahota and C. J. Persico, “High dynamic range variable-gain ampli- fier for CDMA wireless applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Techn. Papers, Feb. 1997, pp. 374–375.
[28] W. Hioe, K. Maio, T. Oshima, Y. Shibahara, T. Doi, K. Ozaki, S. Arayashiki; “0.18-μm CMOS Bluetooth analog receiver with -88-dBm sensitivity”; IEEE J. Solid-State Circuits; vol. 39, Issue: 2, pp. 374–377, Feb. 2004.
[29] W.A. Serdijn, A.C. Van Der Woerd, J. Davidse, A.H.M. van Roermund, “A low-voltage lowpower fully-integratable automatic gain control for hearing instruments”, IEEE J. Solid-State Circuits, vol. 29, no 8, pp. 943–946, Aug. 1994.
[30] J. Silva-Martínez and J. Salcedo-Suñer, “A CMOS automatic gain control for hearing aid devices,” in Proc. Int. Symp. Circuits and Systems, vol. I, 1998, pp. 297–300.
[31] M. Nakamura, N. Ishihara, Y. Akazawa, H. Kimura; “An instantaneous response CMOS optical receiver IC with wide dynamic range and extremely high sensitivity using feed-forward auto-bias adjustment”, IEEE J. Solid-State Circuits, vol. 30, no. 9, pp. 991–997, Sep. 1995.
[32] A. Tanabe, M. Soda, Y. Nakahara, T. Tamura, K. Yoshida, A. Furukawa; “A single-chip 2.4- Gb/s CMOS optical receiver IC with low substrate cross-talk preamplifier”, IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2148–2153, Dec. 1998.
[33] A. Grebennikov and N. Sokal, Switchmode RF power amplifiers, Elsevier/Newnes, 2007, pp. 179–292.
[34] B. L. Humphreys, “Characteristic of broadband parametric amplifiers using fitter networks,” Proc. Inst. Elec. Eng., vol. 111, no. 2, pp. 264, 1964.
[35] C. S. Aitchison and R. V. Gelsthorpe, “A circuit technique for broadbanding the electronic tuning range of Gunn oscillators,” IEEE J. Solid-State Circuits, vol. 12, no. 1, pp. 21–28, Feb. 1977.
[36] N. Kumar, C. Prakash, A. Grebennikov and A. Mediano, “High-efficiency broadband parallel-circuit class-E RF power amplifier With reactance-compensation technique,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 3, pp. 604–612, Mar. 2008.
[37] Coilcraft, “High frequency, high current power inductors,” kit C456 datasheet, Mar. 2002 http://www.coilcraft.com/pdfs/1010vs.pdf
[38] Freescale, “RF power field effect transistors,” MRF6V2010NR1 datasheet, Feb. 2007 http://cache.nxp.com/files/rf_if/doc/data_sheet/MRF6V2010N.pdf
[39] American Technical Ceramics Corp., “ATC 100 B series porcelain superchip multilayer capacitors,” 100 B datasheet, Sep. 2014 http://www.atceramics.com/UserFiles/100b.pdf
[40] Freescale, “RF power field effect transistors,” MRF6V2300NR1 datasheet, Feb. 2007 [Revised May 2007]. http://www.nxp.com/files/rf_if/doc/data_sheet/MRF6V2300N.pdf
[41] F. J. Ortega-Gonzalez, “High power wideband class-E power amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 569–571, Oct. 2010.
[42] F. H. Raab, “Broadband class-E power amplifier for HF and VHF,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 11–16, 2006, pp. 902–905.
[43] 李文賓,高功率高效率振盪器研製,國立中央大學電機工程研究所碩士論文,民國100 年7 月。
[44] 李哲誠,高效率功率放大與振盪器研製,國立中央大學電機工程研究所碩士論文,民國100 年7 月。
[45] S. Ray and M. M. Hella, “A 10 Gb/s Inductorless AGC Amplifier With 40 dB Linear Variable Gain Control in 0.13 μm CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 440–456, Feb. 2016.
[46] C.-F. Liao and S.-I. Liu, “40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 642–655, Mar. 2008.
[47] P. Ossieur et al., “A 10Gb/s linear burst-mode receiver in 0.25m SiGe BiCMOS”, IEEE J. Solid-State Circuits, vol. 48, pp. 381–390, Feb. 2013.
[48] W. Hioe, K. Maio, T. Ooshima, Y. Shibahara, and T. Doi, “Gain calibration and feedforward automatic gain control for CMOS radio-frequency ICs,” in Symp. VLSI Circuits Dig. Tech. Papers, Kyoto, Japan, June 2003, pp. 127–130.
[49] J. P. A. Pérez, B. Calvo, and S. Celma, “A High-performance CMOS feedforward AGC circuit for a WLAN receiver, ” IEEE Trans. Ind. Electron, vol.57, no.8, pp.2851–2857, Aug. 2010
[50] Alegre Pérez, J., Celma Pueyo, S. and Calvo López, B., Automatic gain control. New York: Springer, 2011, pp. 1–28.
[51] J.K. Kwon, K.D. Kim, W.C. Song, G.H. Cho; “Wideband high dynamic range CMOS variable gain amplifier for low voltage and low power wireless applications,” IET Electron. Lett., vol. 39, no. 10, pp. 759–760, May 2003.
[52] Q.-H. Duong, L. Quan, and S.-G. Lee, “An all CMOS 84-dB linear low-power variable gain amplifier,” in VLSI Circuits Symp. Techn. Dig., Jun. 2005, pp. 114–117.
[53] W. Liu, S.-I. Liu, and S.-K. Wei, “CMOS exponential-control variable gain amplifiers,” Proc. Inst. Elect. Eng. Circuits Devices Syst., vol. 151, no. 2, pp. 83–86, Apr. 2004
[54] S.-C. Tsou, C.-F. Li, and P. C. Huang, “A low-power CMOS linear-in-decibel variable gain amplifier with programmable bandwidth and stable group delay,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 12, pp. 1436–1440, Dec. 2006.
[55] Analog device, “High Speed Variable Gain Amplifiers (VGAs),” MT-073 tutorial, Aug. 2010 http://www.analog.com/media/en/training-seminars/tutorials/MT-073.pdf
[56] Agilent RF and Microwave Test Accessories “Directional Couplers and Bridges,” Dec. 2000 http://www.keysight.com/upload/cmc_upload/All/Direct_CouplerOverview.pdf
[57] Texas Instruments, “NE5532x, SA5532x Dual Low-Noise Operational Amplifiers,” Jan. 2015 http://www.ti.com/lit/ds/symlink/ne5532.pdf
[58] Meanwell, “1000 W Power Supply with Single Output,” RSP-1000 series datasheet, May 2016 http://actec.dk/media/wysiwyg/Actec/PDF/Meanwell/RSP-1000-SPEC.PDF
[59] Mini-Circuits, “Coaxial High Power Amplifier,” ZHL-5W-1 datasheet, Mar. 2002 https://www.minicircuits.com/pdfs/ZHL-5W-1.pdf
[60] S. Cripps, RF Power Amplifiers for Wireless Communications, ser. Artech House Microwave Library. Norwood, MA, USA: Artech House, 2006, pp. 290–298.
[61] S. Cripps, Advanced Techniques in RF Power Amplifiers Design, Artech House Inc., Norwood, MA, USA, 2002, pp. 33–57.
[62] A. Grebennikov, RF and Microwave Power Amplifier Design. New York: Mc Graw-Hill, 2005, pp. 372–380.
[63] C. Fager J. C. Pedro, N. B. de Carvalho, H. Zirath, F. Fortes, M. J. Rosario, “A comprehensive analysis of IMD behaviour in RF CMOS power amplifiers.” IEEE J. Solid-State Circuits, vol. 39, no. 1, Jan. 2004.
[64] J.-H. Tsai and T.-W. Huang, “A 38–46 GHz MMIC Doherty power amplifier using post-distortion linearization,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 388–390, May 2007.
[65] J. Curtis et al., “A Ka-band Doherty power amplifier with 25.1 dBm output power, 38% peak PAE and 27% back-off PAE,” IEEE RFIC Symposium, pp. 349–352, June 2013.
[66] S.-C. Jung, O. Hammi, and F. M. Ghannouchi, “Design optimization and DPD linearization of GaN based unsymmetrical Doherty power amplifiers for 3G multicarrier applications,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 9, pp. 2105–2113, Sep. 2009.
[67] A. Markos, K. Bathich, F. Golden, and G. Boeck, “A 50 W unsymmetrical GaN Doherty amplifier for LTE applications,” in Proc. 40th Eur. Microw. Conf., Sep. 2010, pp. 994–997
[68] T. Landon et al., "Design of a 600W Doherty using generation 2 HVHBT with 55% WCDMA efficiency linearized to −55dBc for 2c11 6.5dB PAR," Power Amplifiers for Wireless and Radio Applications (PAWR), 2012 IEEE Topical Conference, Santa Clara, CA, 2012, pp. 73–76.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2016-10-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明