博碩士論文 102521110 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.142.197.212
姓名 游振琮(Chen-Tsung Yu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作
(An Integrated Passive Device Process Featuring Ferroelectric Varactors and Its Application in the Fabrication of a Microwave Phase Shifter)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 使用可調式負載及面積縮放技巧提升功率放大器之效率
★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現★ 應用於極座標發射機之高效率波包放大器與功率放大器
★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現★ 鐵電可變電容之設計與製作
★ 用於功率放大器效率提升之鐵電基可調式匹配網路★ 基於全通網路之類比式及數位式相位偏移器
★ 使用鐵電可變電容及PIN二極體之頻率可調天線★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器
★ 具矽基板貫孔之鐵電可變電容的製作與量測★ 矽基板貫孔的製作和量測
★ 使用鐵電可變電容之頻率可調微帶貼片天線★ 具矽基板貫孔之鐵電可變電容及矽化鉻薄膜電阻的製作與量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 使用積體被動元件製程可有效縮小微波電路之尺寸。本論文呈現一具鐵電可變電容之積體被動元件製程的開發。我們所開發的積體被動元件製程目前可製作的元件包含鐵電可變電容及螺旋電感。我們利用所開發之積體被動元件製程實現一微波相位偏移器,以顯示本製程用於製作可調式微波電路之潛力。
本論文第二章詳細描述本積體被動元件製程。本積體被動元件製程可製作鐵電可變電容及螺旋電感。鐵電可變電容由第一金屬層(M1)、鐵電鈦酸鍶鋇薄膜,及第二金屬層(M2)構成;而螺旋電感則由第三金屬層(M3)、苯並環丁烯(benzocyclobutene, BCB)介電層,及第四金屬層(M4)所構成。本論文主要貢獻在於發展了製作第三金屬層及第四金屬層所需的金電鍍工序,以及旋覆與蝕刻BCB介電層之工序。經金電鍍工序,第三金屬層與第四金屬層可達數微米(µm)之厚度,以降低螺旋電感的微波損耗。而具低介電常數並達數微米厚的BCB介電層則可降低螺旋電感之寄生電容。
本論文第三章介紹一10-GHz類比式相位偏移器之設計,並用第二章所述之積體被動元件製程來製作。相位偏移器使用具磁耦合之全通網路此一電路架構來實現,由可變電容與兩耦合電感所組成;兩耦合電感間之耦合係數設計為正值,以期單級網路便可達到大的相位偏移量。由於製程良率尚不高,因此未有完整的相位偏移器可供量測;但有鐵電可變電容及耦合電感測試鍵可各別量測。量測結果顯示,鐵電可變電容於5-V偏壓下可達到2:1的可調度,0-V時的電容密度約為20 fF/µm2;上電極面積為7×7 µm2的鐵電可變電容其品質因子在10 GHz時約在8–13間。耦合電感量測得之自感於10 GHz為1.4 nH,品質因子約為14,耦合係數為0.64。我們將鐵電可變電容及扣掉下針pad的耦合電感的實際量測結果匯入電路模擬軟體以模擬相位偏移器之性能。模擬結果顯示,相移器的輸入及輸出電壓駐波比由dc至10.5 GHz皆小於2。於原始設計頻率10 GHz時,植入損耗小於5 dB,在可變電容偏壓6 V下的相位偏移量為135°;但相位偏移量最大的點為8.6 GHz,而相移量可達180°。經檢查發現,造成最大相位偏移量的頻率由原始設計的10 GHz移至8.6 GHz的原因為耦合電感之全波電磁模擬時並不準確。經重新模擬後,耦合電感的全波電磁模擬結果與量測結果則相當貼近。
本論文成功地發展了具鐵電可變電容之積體被動元件製程,並用以製作出鐵電可變電容及耦合螺旋電感。將鐵電可變電容及耦合電感的實際量測結果用於模擬一微波相位偏移器之性能,驗證本論文所述之積體被動元件製程具有實現可調式微波電路之潛力。
摘要(英) When implemented using IPD processes, the size of a microwave circuit can be effectively reduced. In this thesis, the development of an integrated passive device (IPD) process featuring ferroelectric capacitors is presented. The devices that can currently be fabricated using the IPD process we develop include ferroelectric varactors and spiral inductors. A microwave phase shifter is implemented using the developed IPD process to demonstrate its potential for fabricating tunable microwave circuits.
The detail of the proposed IPD process is articulated in Chapter 2. The proposed IPD process can be used to fabricated ferroelectric capacitors and spiral inductors. The ferroelectric capacitor is formed by the first metal layer (M1), the ferroelectric barium strontium titanate (BST) thin film, and the second metal layer (M2), whereas the spiral inductor is constructed using the third metal layer (M3), the benzocyclobutene (BCB) inter-metal dielectric layer, and the fourth metal layer (M4). The major contribution of this work is to develop the gold-electroplating procedure for the M3 and M4 layers as well as the procedures for spin-coating and etching the BCB dielectric layer. By gold plating, the thicknesses of the M3 and M4 layers can reach several µm, which would reduce the microwave loss of the spiral inductor. On the other hand, the low-k BCB layer with a thickness of several µm reduces the parasitic capacitance of the spiral inductor.
In Chapter 3, the design of a 10-GHz analog phase shifter, which will be realized using the IPD process described in Chapter 2, is shown. The magnetically coupled all-pass network (MCAPN), composed of varactors and two coupled inductors, is used as the circuit topology for the phase shifter. To achieve a large phase shift by only one section of the MCPN, the coupling coefficient of the two coupled inductors within the MCAPN is set to be positive value. Due to the low yield of the IPD process, we currently do not have a complete phase shifter for measurement. Nevertheless, testkeys of ferroelectric varactors and coupled inductors are available. The measurement results of the testkeys show that the ferroelectric varactor exhibits a tunability of 2:1 under 5-V bias and a 20- fF/µm2 capacitance density at 0 V, and the quality factor of a ferroelectric varactor with a top-electrode area of 7×7 µm2 at 10 GHz ranges from 8 to 13. The measured self-inductance, quality factor, and coupling coefficient of the coupled inductors are 1.4 nH, 14, and 0.64, respectively, at 10 GHz. The measurement results of the ferroelectric varactors and the deembeded inductors are used for simulating the performances of the designed phase shifter. Simulation results show that the input and output voltage standing wave ratios (VSWRs) of the phase shifter are less than 2 from dc to 10.5 GHz. At 10 GHz, which is the original design frequency, the insertion loss is less than 5 dB and the phase shift is 135° when the varactors are biased up to 6 V. However, maximum phase shift, which is 180, occurs at 8.6 GHz. After investigation, it is found that the reason for the frequency shift is due to the inaccurate full-wave electromagnetic (em) simulation of the coupled inductors. After re-simulation, the em simulation result of the coupled inductors now closely matches the measured result.
In this work, an IPD process featuring ferroelectric varactors is successfully developed and used for fabricating ferroelectric varactors and coupled spiral inductors. Using the measured results of the fabricated ferroelectric varactors and coupled inductors to simulate the performance of a microwave phase shifter, it is demonstrated that the IPD process proposed in this thesis has the potential for fabricating tunable microwave circuits.
關鍵字(中) ★ 鐵電可變電容
★ 積體被動元件製程
★ 相位偏移器
關鍵字(英)
論文目次 目錄
國 立 中 央 大 學 I
摘要 I
Abstract III
目錄 VII
圖目錄 IX
表目錄 XI
第一章 緒論 1
1–1 研究動機 1
1–2 文獻回顧[5] 2
1–3 論文架構 3
第二章 積體被動元件製程發展 4
2–1 簡介 4
2–2 可變電容技術及鐵電材料特性簡介 5
2–3 保護層及BCB特性簡介 9
2–4 積體被動元件製程 10
2–4–1 Metal1(電容下電極)製作 10
2–4–2 鐵電薄膜沉積 12
2–4–3 Metal2(電容上電極)製程流程 13
2–4–4 鐵電薄膜介電層製程流程 14
2–4–5 氮化矽保護層之沉積與製作流程 15
2–4–6 Metal3製作流程 16
2–4–7 保護層製程流程 19
2–4–8 Metal4製程流程 21
2–5 結論 23
第三章 使用積體被動元件製程實現之微波相位偏移器 24
3–1 簡介 24
3–2 研究動機 25
3–3 單級全通網路相位偏移器 26
3–3–1 理論分析 26
3–3–2 設計流程 29
3–3–3 被動元件和PHS設計 30
3–3–4 製程流程 39
3–3–5 量測結果 43
3–3–6 結果與討論 49
3–4 結論 55
第四章 結論 57
參考文獻 59
附錄 59
參考文獻 [1] K. Lin, R. C. Frye, B. Ahn, “High rejection BPF for WiMAX applications from Silicon Integrated Passive Device Technology,” in IEEE MTT-S Int. Microw. Symp. Dig.,2010, pp. 1364–1367.
[2] H. K. Chen, Y. C. Hsu, T. Y. Lin, D. C. Chang, Y. Z. Juang, and S. S. Lu, “CMOS wideband LNA design using integrated passive device,” in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 673–676.
[3] C.-H. Huang, T.-S. Horng, C.-C. Wang, C.-T. Chiu, and C.-P. Hung, “Optimum design of transformer-type Marchand balun using scalable integrated passive device technology,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 2, no. 8, pp. 1370–1377, Aug. 2012
[4] P. B. Chinoy and J. Tajadod, ‘‘Processing and microwave characterization of multilevel interconnects using benzocyclobutene dielectric’’, IEEE Trans. Components, Hybrids, and Manufacturing Technology, Vol. 16, pp. 714719, 1993.
[5] H.-Y. Li, “Analog and digital phase shifters based on all-pass networks,” Master dissertation, National Central University, 2014.
[6] M. Kumar, R. J. Menna, and H.-C. Huang, “Broad-band active phase shifter using dual-gate MESFET,” IEEE Trans. Microw. Theory Tech., vol. MTT-29, no. 10, pp. 1098–1102, Oct. 1981.
[7] S. J. Kim and N. H. Myung, “A new active phase shifter using a vector sum method,” IEEE Microw. Guided Wave Lett., vol. 10, no. 6, pp. 233–235, Mar. 2000.
[8] K.-J. Koh, and G. M. Rebeiz, “0.13-µm CMOS phase shifters for X-, Ku-, and K-band phased arrays,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2535–2546, Nov. 2007.
[9] K.-J. Koh and G. M. Rebeiz, “A 6-18 GHz 5-bit active phase shifter,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2010, pp. 792–795.
[10] A. Asoodeh and M. Atarodi, “A full 360° vector-sum phase shifter with very low rms phase error over a wide bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1626–1634, Jun. 2012.
[11] A. S. Nagra and R. A. York, “Distributed analog phase shifters with low insertion loss,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 9, pp. 1705–1711, Sep. 1999.
[12] N. S. Barker and G. M. Rebeiz, “Optimization of distributed MEMS transmission-line phase shifters—U-band and W-band designs,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 11, pp. 1957–1966, Nov. 2000.
[13] B. Acikel, T. R. Taylor, P. J. Hansen, J. S. Speck, and R. A. York, “A new high performance phase shifter using BaxSr1−xTiO3 thin films,”IEEE Microw. Wireless Compon. Lett., vol. 12, no. 7, pp. 237–239, Jul. 2002.
[14] F. Ellinger, H. Jackel, and W. Bachtold, “Varactor-loaded transmission-line phase shifter at C-band using lumped elements,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1135–1140, Apr. 2003.
[15] A.-L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 11, pp. 3905–3915, Nov. 2013.
[16] R. H. Hardin, E. J. Downey, and J. Munushian, “Electronically-variable phase shifters utilizing variable capacitance diodes,” Proc. IRE (Correspondence), vol. 48, no. 5, pp. 944–945, May 1960.
[17] S. Lucyszyn and I. D. Robertson, “Decade bandwidth hybrid analogue phase shifter using MMIC reflection terminations,” Electron. Lett., vol. 28, no. 11, pp. 1064–1065, May 1992.
[18] F. Ellinger, R. Vogt, and W. B¨achtold, “Compact reflective-type phase-shifter MMIC for C-band using a lumped-element coupler,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 913–917, May 2001.
[19] D. Adler and R. Popovich, “Broadband switched-bit phase shifter using all-pass networks,” in IEEE MTT-S Int. Microw. Symp. Dig., Jul. 1991, pp. 265–268.
[20] D.-W. Kang, H. D. Lee, C.-H. Kim, and S. Hong, “Ku-band MMIC phase shifter using a parallel resonator with 0.18-µm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 294–301, Jan. 2006.
[21] I. J. Bahl and D. Conway, “L- and S-band compact octave bandwidth 4-bit MMIC phase shifters,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 293–299, Feb. 2008.
[22] M. Hangai, M. Hieda, N. Yunoue, Y. Sasaki, and M. Miyazaki, “S- and C-band ultra-compact phase shifters based on all-pass networks,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 1, pp. 41–47, Jan. 2010.
[23] M. Meghdadi, M. Azizi, M. Kiani, A. Medi, and M. Atarodi, “A 6-bit CMOS phase shifter for S-band,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3519–3526, Dec. 2010.
[24] Q. Xiao, “A compact L-band broadband 6-bit mmic phase shifter with low phase error,” in Proc. Eur. Microw. Integr. Circuits Conf., Oct. 2011, pp. 410–413.
[25] X. Tang and K. Mouthaan, “Design of large bandwidth phase shifters using common mode all-pass networks,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 55–57, Feb. 2012.
[26] S. Gevorgian, Ferroelectrics in Microwave Devices, Circuits and Systems: Physics, Modeling, Fabrication and Measurements. New York: Springer-Verlag, 2009.
[27] J.-S. Fu, “Adaptive impedance matching circuits based on ferroelectric and semiconductor varactors,” Ph. D. dissertation, The University of Michigan, 2009.
[28] S. Gevorgain, Ferroelectrics in Microwave Devices, Circuits and Systems, 1st ed. London: Springer–Verlag, 2009.
[29] H.-Y. Li and J.-S. Fu, “Analysis of magnetically coupled all-pass network for phase-shifter design,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 9, pp. 2025–2037, Sep. 2014.
[30] C. Huang, K. Buisman, L. K. Nanver, F. Sarubbi, M. Popadi ́c, T. L. M. H. Schellevis, L. E. Larson, and L. C. N. de Vreede, “A 67 dBm OIP3 multistacked junction varactor,” IEEE Microw. Wireless Comp. Lett., vol. 18, no. 11, pp. 749–751, November 2008.
[31] P.-B. Chinoy and J. Tajadod, “Processing and microwave characterization of multilevel interconnects using benzocyclobutene dielectric,” IEEE Trans. Components, Hybrids, and Manufacturing Technology, vol. 16, pp. 714-719,1993.
[32] S.-C. Chen, “Design and fabrication of ferroelectric varactors,” Master dissertation, National Central University, 2013.
[33] O. El-Gharniti, E. Kerhervé, and J.-B. Bégueret, “Modeling and characterization of on-chip transformers for silicon RFIC,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 4, pp. 607–615, Apr. 2007.
[34] J.-S. Fu, X. A. Zhu, J. D. Phillips, and A. Mortazawi, “Improving the linearity of ferroelectric-based microwave tunable circuits,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, pp. 354–360, February 2007.
[35] Z. Zhao, X. Wang, K. Choi, C. Lugo, and A. T. Hunt, “Ferroelectric phase shifters at 20 and 30 GHz” IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, pp. 430–437, February 2007.
[36] L.-Y. V. Chen, R. Forse, A. H. Cardona, T. C. Watson, and R. York, “Compact analog phase shifters using thin-film (Ba,Sr)TiO3 varactors,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 667–670.
[37] D. Kim, Y. Choi, M. Ahn, M. G. Allen, J. S. Kenney and P. Marry, “2.4 GHz continuously variable ferroelectric phase shifters using all-pass networks” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 10, pp. 434–436, Oct. 2003.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2015-11-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明