博碩士論文 102522009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.238.184.78
姓名 曾佳慧(Jia-Huei Tseng)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 多個魚眼相機的聯合偵測與追蹤系統
(Joint Detection and Tracking System with Multiple Fisheye Cameras)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 監控設備在日常生活中隨處可見,無論是在公共場所或私人空間,如學校、公司、賣場、街道路口、家庭等,都是視訊監控的應用範圍。然而,一台相機可拍攝的範圍有限且容易受到環境結構遮蔽的影響,難以涵蓋所要監視的範圍,因此多相機聯合偵測系統的發展越來越受關注。
相較於一般視角的相機,魚眼相機的視角可高達 180 o,可拍攝到更寬廣的範圍;因此在相同的監控環境中,使用魚眼相機可減少設備的使用量,降低系統建構及管理的成本。本研究使用兩台魚眼相機為例,提出一個自動偵測及追蹤的環境監視系統 (surveillance system);整個系統共分為兩部份:前景物偵測與前景物追蹤。
在前景物偵測上,我們將相機固定在室內天花板下,以背景相減法 (background subtraction) 偵測前景物。以一段時間訓練背景,利用新進影像和背景影像的差異,檢測出畫面的前景物。根據背景亮度較低但色彩差異不大的特性處理陰影問題,減少錯誤前景物的判斷;使用形態學 ( morphology) 處理畫面雜訊點,對於急遽的光線變化如開關燈和緩和的光線變化如日光漸變可以自動更新背景。
在前景物追蹤上,我們使用卡爾曼濾波器 (Kalman filter) 預測前景物的位置,在相機重疊畫面預先建立轉換表,當前景物跨越相機監視範圍時,利用轉換表能了解不同相機追蹤的物件其實是同一前景物,維持物件編號聯合追蹤。為了要增加比對的可靠性,加入前景物的外型特徵輔助判斷;例如,顏色。在系統運作時兩部相機皆可實現多目標的追蹤,並且持有各自的追蹤器,當物件發生短暫遮蔽仍持續預測位置並提供平順的移動軌跡。
本研究的系統使用兩部魚眼相機,使用多段具有不同光線亮度和人物數量的影片做實驗,平均有96.7 %的敏感度,誤判率為0.45%,錯誤判斷發生的原因是前景物的衣物和背景色彩很相似,加入Kalman filter追蹤輔助後可以使敏感度提升為98.55 %。實驗結果證實現了我們的系統能適應室內監控許多挑戰狀況,如光線變化、陰影干擾、遮蔽,是有效且穩定的聯合前景偵測和追蹤系統。
摘要(英) Video surveillance has widely applied in our daily life, both in public and private environments, such as schools, offices, shopping malls, streets, and homes; however,the view scope of a single camera is finite and limited by scene structures. In order to monitor a wide area and trace a complete trajectory of a moving object, multi-camera video surveillance systems received a lot of attention in recent years.
The view angleof a fisheye camera is 180 degree,so it can cover a wider field of view than a normal camera. Thus, in the same surveillance environment,only a fewfisheyecameras can replace many traditional cameras to survey the events; such that the cost of system construction and management are then reduced. In this thesis, we propose an automatic detection and tracking system with two fisheye cameras for environment surveillance.The proposed system is composed of two major modules: foreground detection and foreground tracking.
In the foreground detection module,background subtraction is used to detect foreground pixels and logical morphology is exploited to connect foreground pixels as blobs and remove noises. Shadow areas are removed based on the characteristics of shadow that is a small block in background image with a significant change inintensity. Background update mechanism can adapt to the rapid and slow light change.
Foreground tracking is accompanied with Kalman filtering for pedestrian motion prediction. A transform table is pre-established to associate multi-camera data in the overlapping areas.When objectacross disjoint camera views, the data in the lookup table can provide enough information to realize the moving object in camera views actually belonging to the same object,and keep consistent labels on the object.To improve the reliability of the tracking performance, motion and color appearance features are used to match the detected objects in different cameras.Every camera has its own trackerto trace multiple target trajectories even if the moving objects are partial and complete occluded.
We conducted experiments with the proposed system on several videos; the environments of these captured videosare varied in brightness and have different object numbers. Theexperiments results show that the average sensitivity is 96.7 percent and the average false positive rate is 0.45 percent because the foreground objects are similar to the background. The average sensitivity rises to 98.55 percent with the Kalman filter.It demonstrates that the proposed method can work well under challenging conditions, such as light change, shadow interference, objectocclusion.So the proposed joint detection and tracking system is effective andreliable in practice.
關鍵字(中) ★ 多目標追蹤
★ 魚眼相機
★ 多相機系統
★ 物件偵測
★ 卡爾曼濾波器
關鍵字(英) ★ multi-target tracking
★ fisheye camera
★ multi-camera system
★ object detection
★ Kalman filter
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.2 系統概述 2
1.3 論文架構 5
第二章 相關研究 6
2.1 前景偵測 6
2.1.1 codebook 背景模式介紹 10
2.1.2 codebook 背景模式建立 12
2.1.3 codebook 背景模式使用 14
2.2 多相機追蹤技術 14
第三章 基本理論 18
3.1 形態學 18
3.2 連通物件 20
3.3 HSV色彩空間 21
3.4 卡爾曼濾波器 23
第四章 以codebook背景模式偵測前景 27
4.1 背景相減法檢測前景物 27
4.2 前景物後處理 27
4.3 背景更新機制 30
4.4 前景特徵擷取 31
第五章 使用Kalman filter追蹤 32
5.1 比對特徵 32
5.2 Kalman filter 系統參數 34
5.3 多相機追蹤 36
第六章 實驗 39
6.1 實驗環境 39
6.2 前景偵測實驗結果 41
6.3 追蹤模組實驗結果 44
6.4 實驗結果分析 46
第七章 結論 50
參考文獻 51
參考文獻 [1] Carroll, R., M. Agrawal, and A. Agarwala, "Optimizing content-preserving projections for wide-angle images," ACM Trans. on Graphics-TOG, vol.28, no.3, pp.1-9, 2009.
[2] Chen, C. H., Y. Yao, D. Page, B. Abidi, A. Koschan, and M. Abidi, "Camera handoff with adaptive resource management for multi-camera multi-object tracking," Image and Vision Computing, vol.28, no.6, pp.851-864, 2010.
[3] Chen, X., L. An, and B. Bhanu, "Multitarget tracking in nonoverlapping cameras using a reference set," IEEE Sensors Journal, vol.15, no.5, pp.2692-2704, 2015.
[4] Doretto, G., T. Sebastian, P. Tu, and J. Rittscher, "Appearance-based person reidentification in camera networks: Problem overview and current approaches," Journal of Ambient Intelligence and Humanized Computing, vol.2, no.2, pp.127-151, 2011.
[5] Eshel, R. and Y. Moses, "Homography based multiple camera detection and tracking of people in a dense crowd," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Anchorage, AK, Jun.23-28, 2008, pp.1-8.
[6] Gennery, D. B., "Generalized camera calibration including fish-eye lenses," Int. Journal of Computer Vision, vol.68, no.3, pp.239-266, 2006.
[7] Gheissari, N., T. B. Sebastian, P. H. Tu, J. Rittscher, and R. Hartley, "Person reidentification using spatiotemporal appearance," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, New York, NY, Jun.17-22, 2006, pp.1528-1535.
[8] Hamid, R., R. K. Kumar, M. Grundmann, K. Kim, I. Essa, and J. Hodgins, "Player localization using multiple static cameras for sports visualization," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, Jun.13-18, 2010, pp.731-738.
[9] Huang, T. and S. Russell, "Object identification in a Bayesian context," in Proc. Int. Joint Conf. on Artificial Intelligence, Nagoya, Aichi, Aug.23-29, 1997, pp.1276-1282.
[10] Hughes, C., M. Glavin, E. Jones, and P. Denny, "Review of geometric distortion compensation in fish-eye cameras," in Proc. IET Irish Signals and Systems Conf., Galway, Irish, Jun.18-19, 2008, pp.162-167.
[11] Hughes, C., M. Glavin, and E. Jones, "Simple fish-eye calibration method with accuracy evaluation," Electronic Letters on Computer Vision and Image Analysis, vol.10, no.1, pp.54-62, 2011.
[12] Javed, O., Z. Rasheed, K. Shafique, and M. Shah, "Tracking across multiple cameras with disjoint views," in Proc. IEEE Int. Conf. on Computer Vision, Nice, France, Oct.13-16, 2003, pp.952-957.
[13] Javed, O., K. Shafique, Z. Rasheed, and M. Shah, "Modeling inter-camera space-time and appearance relationships for tracking across non-overlapping views," Computer Vision and Image Understanding, vol.109, no.2, pp.146-162, 2008.
[14] Jiang, H., S. Fels, and J. J. Little, "A linear programming approach for multiple object tracking," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Minneapolis, MN, Jun.17-22, 2007, pp.1-8.
[15] Khan, S., O. Javed, Z. Rasheed, and M. Shah, "Human tracking in multiple cameras," in Proc. Int. Conf. on Computer Vision, Vancouver, BC,Canada, Jul.7-14, 2001, pp.331-336.
[16] Khan, S. and M. Shah, "Consistent labeling of tracked objects in multiple cameras with overlapping fields of view," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.25, no.10, pp.1355-1360, 2003.
[17] Kim, K., T. H. Chalidabhongse, D. Harwood, and L. Davis, "Real-time foreground-background segmentation using codebook model," Real-Time Imaging, vol.11, no.3, pp.172-185, 2005.
[18] Kuo, C. H., C. Huang, and R. Nevatia, "Inter-camera association of multi-target tracks by on-line learned appearance affinity models," inProc.ofEuropean Conf. on Computer Vision, ed. Crete, Greece, 2010, pp. 383-396.
[19] Liem, M. and D. M. Gavrila, "Multi-person tracking with overlapping cameras in complex, dynamic environments," in Proc. British Machine Vision Conf., London, UK,Sep.7-10, 2009.
[20] Makris, D., T. Ellis, and J. Black, "Bridging the gaps between cameras," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Washington DC, Jun.27-Jul.2, 2004, pp.II205-II210.
[21] Marinakis, D., G. Dudek, and D. J. Fleet, "Learning sensor network topology through Monte Carlo expectation maximization," in Proc. IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, Apr.18-22 2005, pp.4581-4587.
[22] Morariu, V. I. and O. I. Camps, "Modeling correspondences for multi-camera tracking using nonlinear manifold learning and target dynamics," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, New York, NY, Jun.17-22, 2006, pp.545-552.
[23] Mundhenk, T. N., M. J. Rivett, X. Liao, and E. L. Hall, "Techniques for fisheye lens calibration using a minimal number of measurements," in Proc. Conf. on Intelligent Robots and Computer Vision XXI: Algorithms, Techniques, and Active Vision, Boston, MA, Nov.7-8, 2000, pp.181-190.
[24] Pasula, H., S. Russell, M. Ostland, and Y. Ritov, "Tracking many objects with many sensors," in Proc. Int. Joint Conf. on Artificial Intelligence, Stockholm, Sweden, Jul.31-Aug.6, 1999, pp.1160-1167.
[25] Rahimi, A., B. Dunagan, and T. Darrell, "Simultaneous calibration and tracking with a network of non-overlapping sensors," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Washington DC, Jun.27-Jul.2, 2004, pp.I187-I194.
[26] Saito, M., K. Kitaguchi, G. Kimura, and M. Hashimoto, "People detection and tracking from fish-eye image based on probabilistic appearance model," in Proc. Annual Conf. on Society of Instrument and Control Engineers, Tokyo, Japan, Sep.13-18, 2011, pp.435-440.
[27] Shao, J., N. Dong, F. Liu, and Z. Li, "A close-loop tracking approach for multi-view pedestrian tracking," Journal of Computational Information Systems, vol.7, no.2, pp.539-547, 2011.
[28] Song, B. and A. K. Roy-Chowdhury, "Robust tracking in a camera network: A multi-objective optimization framework," IEEE Journal on Select. Top. in Signal Process., vol.2, no.4, pp.582-596, 2008.
[29] Stauffer, C. and W. E. L. Grimson, "Adaptive background mixture models for real-time tracking," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Fort Collins, CO, Jun.23-25, 1999, pp.246-252.
[30] Tieu, K., G. Dalley, and W. E. L. Grimson, "Inference of non-overlapping camera network topology by measuring statistical dependence," in Proc. IEEE Int. Conf. on Computer Vision, Beijing, China, Oct.17-21, 2005, pp.1842-1849.
[31] Wang, M. L., C. C. Huang, and H. Y. Lin, "An intelligent surveillance system based on an omnidirectional vision sensor," in Proc. IEEE Conf. on Cybernetics and Intelligent Systems, Bangkok, Thailand, Jun.7-9, 2006, pp.1-6.
[32] Wang, X., X. Ma, and W. E. Grimson, "Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.31, no.3, pp.539-555, 2009.
[33] Wang, X., "Intelligent multi-camera video surveillance: A review," Pattern Recognition Letters, vol.34, no.1, pp.3-19, 2013.
[34] Yilmaz, A., O. Javed, and M. Shah, "Object tracking: A survey," ACM Computing Surveys, vol.38, no.4, pp.1-45, 2006.
指導教授 曾定章(Din-Chang Tseng) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明