博碩士論文 102522043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.226.72.118
姓名 應帆(Fan Ying)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 一個在 O p e n S t a c k 平台 進行 混 合 式 自 動 擴 展 的 方 法
(A Hybrid Auto-Scaling Approach on OpenStack Cloud Platform)
相關論文
★ 以伸展樹為基礎的Android Binder Driver★ 一個建立在平行工作系統上的動態全球計算平台
★ 用權重參照計數演算法執行主動物件垃圾收集★ 一個動態負載平衡之最大可能性估算計算架構
★ 利用多項系統負載資訊進行動態P2P系統重組的策略研究★ 基於Hadoop系統的雲端應用程式特徵擷取與計算監測架構
★ 適用於大型動態分散式系統的調適性計算模型★ 一個提供彈性虛擬資料中心的雲端服務平台
★ 雲端彈性虛擬機房服務平台之資源控管中心★ 一個適用於自動供應雲端系統的動態調適計算架構
★ 線性相關工作與非相關工作的探索式排程策略★ 適用於大資料集高效率的分散式階層分群演算法
★ 混合雲端環境上的多重代理人動態調適計算管理架構★ 基於圖形的平行化最小生成樹分群演算法
★ 基於密度的超立方體覆蓋之啟發式演算法★ 利用 Cache 改善雲端虛擬機器啟動之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 虛擬化技術及網路環境尚未成熟前,機房建置主要透過實體機器組成伺服器群組來提供計
算服務。隨著近幾年虛擬化技術及網路環境發展迅速,許多雲端上的計算機房也開始由傳
統實體機房轉型為虛擬化機房,並透過虛擬機提供計算服務。當虛擬化機房面臨突然快速
增加之計算請求時,一般會採用額外新增伺服器或者虛擬機器來分擔計算負荷,而這種方
式稱為虛擬叢集之擴展,反觀傳統機房對於上述狀況無法如此迅速因應。而在實務上,例
如 OpenStack 的自動擴展機制,採用的方法是反應式自動擴展機制,也就是去檢查系統資
源使用是否超過預定的數值(Threshold)後進行資源調整。在本論文研究中,我們以預測式
自動擴展機制為基礎,透過歷史資料來預測未來工作負載,使得伺服器叢集可以為即將到
來的工作負載,提早準備好資源因應。本論文並將統計學的預測方法實作到 OpenStack 上,
與反應式自動擴展結合,提出混合式自動擴展機制,最後透過實驗結果驗證本論文提出之
策略,能在系統面臨大量工作負載來臨時,對於使用者請求完成數及回應速度有著優異表
現,並且不會對系統造成額外負擔。
關鍵字: 自動擴展、OpenStack、負載平衡、反應式自動擴展、預測式自動擴展、虛擬機。
摘要(英) The use of virtualization technology has gradually changed the way a datacenter works in recent
years. Nowadays the end-users of a datacenter do not access physical resources directly. Instead,
they access virtualized resources, such as VMs and virtual clusters, on top of a pool of physical
resources. This new computing paradigm provides the datacenter administrators a more flexible,
scalable, manageable, and economical way for resource provisioning/sharing as prior study
indicated. When a service on a VM encounters a massive amount of workload, it can scale faster
than a non-virtualized datacenter, by dynamically turning on extra virtual/physical machines to
share the workload. For example, OpenStack, an open source project for building a virtualized
cloud platform, provides a reactive approach for auto-scaling. That is, it creates new VMs to
share workload when the workload of a monitored VM exceeds a given workload threshold. The
weakness of the mechanism is that, sometimes it is too late to handle unexpected workload surges
and thus can decrease the quality of the services running on the VM. To this end, we purpose a
new hybrid auto-scaling mechanism for auto-scaling. It relies on a predictive auto-scaling
approach that predicts the upcoming workload by historical workloads. To prevent the case that
the prediction result is not accurate enough, we also use the reactive auto-scaling mechanism
provided by OpenStack, and integrate the two mechanisms as one. We have verified the
performance of our approach via experiments, and the results show that, when a massive
workload arrives, the proposed approach outperforms other approaches. In addition, the proposed
approach does not incur much overhead as the experimental results show.
Keywords: Auto-scaling, reactive auto-scaling, predictive auto-scaling, load balancing, load
sharing, virtual machine
關鍵字(中) ★ 自動擴展
★ 混合式
關鍵字(英) ★ OpenStack
★ auto-scaling
★ hybrid
論文目次 目錄
摘要 ............................................................................................................................. i
ABSTRACT ............................................................................................................... ii
目錄 ........................................................................................................................... iii
圖目錄 ....................................................................................................................... vi
表目錄 ..................................................................................................................... viii
一 、緒論 ................................................................................................................... 1
1-1 研究背景 .......................................................................................................... 2
1-1-1 雲端運算 ................................................................................................. 2
1-1-2 虛擬化技術 ............................................................................................. 4
1-1-3 雲端作業系統 ......................................................................................... 5
1-1-4 工作負載預測與自動擴展機制 ............................................................. 5
1-2 研究動機 .......................................................................................................... 5
1-3 研究目標 .......................................................................................................... 6
1-4 研究貢獻 .......................................................................................................... 6
1-5 論文架構 .......................................................................................................... 6
二、相關研究 ............................................................................................................ 7
2-1 工作負載預測方法 ......................................................................................... 7
2-2 自動擴展機制.................................................................................................. 7
iv
2-3 OpenStack 自動擴展機制 ............................................................................... 8
三、系統設計 .......................................................................................................... 13
3-1 預測工作負載的方法 ................................................................................... 13
3-2 歷史負載資料的重要性 ............................................................................... 17
3-3 混合式自動擴展之決策 ............................................................................... 20
3-4 預測工作負載的自動擴展演算法 ............................................................... 20
四、系統架構 .......................................................................................................... 24
4-1 基於 OpenStack 的工作負載預測及自動擴展機制的組成元件 ................ 24
4-1-1 OpenStack 相關元件 .............................................................................. 24
4-1-2 本論文實作元件 .................................................................................... 36
4-2 工作負載預測及自動擴展機制運作流程 ................................................... 37
4-3 反應式與預測式自動擴展機制的協同合作 ............................................... 40
五、實驗評估..........................................................................................................43
5 -1 實驗環境.......................................................................................................43
5-1-1 硬體配置....................................................................................................43
5-1-2 軟體配置...................................................................................................45
5-2 實驗步驟........................................................................................................45
5-3 實驗結果與分析............................................................................................46
5-3-1 混合式自動擴展機制............................................................................46
5-3-2 CPU 使用率、資源使用率與使用者請求回應速度 ...........................49
六、結論..................................................................................................................54
七、未來展望..........................................................................................................55
7-1 未來精進方向................................................................................................55
參考文獻..................................................................................................................57
參考文獻 參考文獻
[1] Y. Jadeja, and K. Modi, “Cloud computing - concepts, architecture and
challenges,” in Computing, Electronics and Electrical Technologies
(ICCEET), 2012 International Conference on, 2012, pp. 877-880.
[2] A. S. Idris, N. Anuar, M. M. Misron, and F. H. M. Fauzi, “The readiness of
Cloud Computing: A case study in Politeknik Sultan Salahuddin Abdul Aziz
Shah, Shah Alam,” in Computational Science and Technology (ICCST),
2014 International Conference on, 2014, pp. 1-5.
[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud
computing,” Commun. ACM, vol. 53, no. 4, pp. 50-58, 2010.
[4] F. B. Shaikh, and S. Haider, “Security threats in cloud computing,” in
Internet Technology and Secured Transactions (ICITST), 2011 International
Conference for, 2011, pp. 214-219.
[5] M. Rosenblum, and T. Garfinkel, “Virtual machine monitors: current
technology and future trends,” Computer, vol. 38, no. 5, pp. 39-47, 2005.
[6] L. Yunfa, L. Wanqing, and J. Congfeng, “A Survey of Virtual Machine
System: Current Technology and Future Trends,” in Electronic Commerce
and Security (ISECS), 2010 Third International Symposium on, 2010, pp.
332-336.
[7] G. Andrews, Foundations of Multithreaded, Parallel, and Distributed
Programming: Addison–Wesley, 2000.
[8] D. Peleg, Distributed computing: a locality-sensitive approach: Society for
Industrial and Applied Mathematics, 2000.
[9] W. Xiaolong, G. Genqiang, L. Qingchun, G. Yun, and Z. Xuejie,
“Comparison of open-source cloud management platforms: OpenStack and
OpenNebula,” in Fuzzy Systems and Knowledge Discovery (FSKD), 2012
9th International Conference on, 2012, pp. 2457-2461.
[10] C. Baun, M. Kunze, J. Nimis, and S. Tai, "Open Source Cloud Stack," Cloud
Computing, pp. 49-62: Springer Berlin Heidelberg, 2011.
[11] N. Taeheum, and K. Jongwon, “Cloud-based service function chaining with
distributed VMs and its underlay-aware improvement,” in Information
Networking (ICOIN), 2015 International Conference on, 2015, pp. 428-429.
[12] J. Yang, C. Liu, Y. Shang, B. Cheng, Z. Mao, C. Liu, L. Niu, and J. Chen,
“A cost-aware auto-scaling approach using the workload prediction in
service clouds,” Information Systems Frontiers, vol. 16, no. 1, pp. 7-18,
03/01, 2014.
51
[13] K. Qazi, L. Yang, and A. Sohn, "Workload Prediction of Virtual Machines
for Harnessing Data Center Resources." pp. 522-529, 2014.
[14] D. Levy, “Chaos theory and strategy: Theory, application, and managerial
implications,” Strategic Management Journal, vol. 15, no. S2, pp. 167-178,
1994.
[15] L. Yazdanov, and C. Fetzer, "Lightweight Automatic Resource Scaling for
Multi-tier Web Applications." pp. 466-473, 2014.
[16] A. Bashar, "Autonomic scaling of Cloud Computing resources using BNbased prediction models." pp. 200-204, 2013.
[17] Z. Li, Z. Yichuan, P. Jamshidi, X. Lei, and C. Pahl, “Workload Patterns for
Quality-Driven Dynamic Cloud Service Configuration and Auto-Scaling,” in
Utility and Cloud Computing (UCC), 2014 IEEE/ACM 7th International
Conference on, 2014, pp. 156-165.
[18] A. Keller, and H. Ludwig, “The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services,” Journal of
Network and Systems Management, vol. 11, no. 1, pp. 57-81, 2003/03/01,
2003.
[19] K. Hyejeong, K. Jung-in, K. Yoonhee, and H. Jaegyoon, “A SLA driven VM
auto-scaling method in hybrid cloud environment,” in Network Operations
and Management Symposium (APNOMS), 2013 15th Asia-Pacific, 2013, pp.
1-6.
[20] L. Shengming, W. Ying, Q. Xuesong, W. Deyuan, and W. Lijun, "A
workload prediction-based multi-VM provisioning mechanism in cloud
computing." pp. 1-6, 2013.
[21] S. Imai, T. Chestna, and C. A. Varela, "Accurate Resource Prediction for
Hybrid IaaS Clouds Using Workload-Tailored Elastic Compute Units." pp.
171-178, 2013.
[22] G. Tesauro, “Reinforcement Learning in Autonomic Computing: A
Manifesto and Case Studies,” Internet Computing, IEEE, vol. 11, no. 1, pp.
22-30, 2007.
[23] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, "A Hybrid
Reinforcement Learning Approach to Autonomic Resource Allocation." pp.
65-73, 2006.
[24] L. R. Moore, K. Bean, and T. Ellahi, “Transforming reactive auto-scaling
into proactive auto-scaling,” in Proceedings of the 3rd International
Workshop on Cloud Data and Platforms, Prague, Czech Republic, 2013, pp.
7-12.
[25] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A Review of Autoscaling Techniques for Elastic Applications in Cloud Environments,”
Journal of Grid Computing, pp. 1 - 34, 2014.
52
[26] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
“CloudSim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Software:
Practice and Experience, vol. 41, no. 1, pp. 23-50, 2011.
[27] C. Magherusan-Stanciu, A. Sebestyen-Pal, E. Cebuc, G. Sebestyen-Pal, and
V. Dadarlat, "Grid System Installation, Management and Monitoring
Application," Parallel and Distributed Computing (ISPDC), 2011 10th
International Symposium on, 2011, pp. 25-32.
[28] R. Khare, and R. N. Taylor, “Extending the Representational State Transfer
(REST) Architectural Style for Decentralized Systems,” in Proceedings of
the 26th International Conference on Software Engineering, 2004, pp. 428 -437.
[29] D. Mosberger, and T. Jin, “httperf—a tool for measuring web server
performance,” SIGMETRICS Perform. Eval. Rev., vol. 26, no. 3, pp. 31-37,
1998.
[30] D. Dongre, G. Sharma, M. P. Kurhekar, U. A. Deshpande, R. B. Keskar, and
M. A. Radke, "Scalable Cloud Deployment on Commodity Hardware Using
OpenStack," Advanced Computing, Networking and Informatics- Volume 2,
Smart Innovation, Systems and Technologies M. Kumar Kundu, D. P.
Mohapatra, A. Konar and A. Chakraborty, eds., pp. 415-424: Springer
International Publishing, 2014.
指導教授 王尉任 審核日期 2015-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明