博碩士論文 102522061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:100.26.179.251
姓名 羅鳴雁(Ming-yan Luo)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 形態學影像處理硬體加速器設計與應用
(Design and Application of Morphological Image Processing Hardware Accelerator)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大多數形態學研究都強調硬體加速器,一旦需求改變或設計變更時,須重新設計硬體架構。本論文以MIAT(本實驗室)系統方法論,設計一個高彈性、可程式化的形態學影像處理硬體加速器架構。此架構包含多個串連的形態學核心模組(Mathematical Morphology Function Block, MMFB),以管線化控制提升各模組的效能。藉由軟體控制其硬體表現行為,達到高度彈性化且通用性之硬體加速器。在功能驗證中以條碼辨識為例,使用本硬體架構將影像侵蝕,刪除不必要之資訊,在使用膨脹運算還原回原始影像資料,最後經辨識得到其結果。本研究的貢獻在於軟硬體整合,以軟體控制其硬體表現行為,且經功能驗證後,其硬體架構可提供高彈性化及通用性。
摘要(英) Most researches put emphasis on the hardware accelerator for mathematical morphology. If there is something wrong, the architecture will need to be redesigned. In this paper, MIAT (our laboratory) system methodology is used to design a high flexible and programmable morphological hardware accelerator. There are several morphology models (Mathematical Morphology Function Block) inside and pipeline control is used to improve each MMFB’s efficacy. We use software to control its hardware performance. By these means, it can achieve high flexibility and general purpose. We use barcode identification to verify this architecture. Noise is deleted with erosion operator and the origin image information is got by dilation. Finally, get the result with identification. The contribution of this paper is to integrate hardware and software. Control the hardware performance behavior with software. After functional verification, the hardware architecture provides high elasticity and general purpose.
關鍵字(中) ★ 形態學
★ 影像處理
★ 硬體加速器
關鍵字(英) ★ Morphological Image Processing
★ Hardware Accelerator
論文目次 摘 要 I
ABSTRACT II
目錄 . III
圖目錄 V
表目錄 VIII
第一章、緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文架構 3
第二章、形態學影像處理硬體架構 4
2.1 形態學基本運算 4
2.1.1 侵蝕 5
2.1.2 膨脹 6
2.1.3 斷開 7
2.1.4 閉合 7
2.2 形態學影像處理器 8
2.3 線性收縮式陣列(Linear Systolic Array) 11
2.4 Pseudo-MIMD 12
2.5 SE 分解 13
2.6 可重組形態學硬體加速器 14
第三章、形態學影像處理軟硬體整合設計 18
3.1 MIAT 系統設計方法論 18
3.2 軟硬體整合設計 22
3.3 MMFB 設計與實作 23
3.3.1 MMFB 架構 23
3.3.2 MMFB 遮罩運算 24
3.3.3 彈性控制器架構 26
3.4 Mask operation 遮罩運算 27
3.4.1 Sobel Operator 27
3.4.2 相鄰像素平均法(Neighborhood averaging) 28
3.5 管線化控制器(Pipeline Controller) 29
第四章、條碼辨識系統軟硬體整合設計與驗證 32
4.1 軟硬體開發環境 32
4.1.1 CMOS 影像感測器 32
4.1.2 FPGA 33
4.1.3 STM32F429 34
4.2 一維條碼辨識原理與演算法 35
4.3 條碼辨識系統設計 36
4.3.1 IDEF0 系統架構 37
4.4 系統合成 41
4.4.1 嵌入式硬體合成 41
4.4.2 軟硬體整合 44
4.5 結果與討論 45
4.5.1 執行時間 45
4.5.2 執行成果 45
第五張、結論與未來研究方向 48
5.1 結論 48
5.2 未來研究方向 48
參考文獻 49
參考文獻 [1] F. Y. Shih, Image Processing and Mathematical Morphology: Fundamentals and Applications(1st ed.), 2009.
[2] P. Soille, Morphological image analysis: principles and applications(2nd ed.), 2004.
[3] G. Louverdis, and I. Andreadis, “Design and implementation of a fuzzy hardware structure for morphological color image processing”, IEEE Trans. Circuits Syst. Video Technol., 2003, vol.13, no.3, pp. 277–288.
[4] T. R. Tuinstra, “Reading barcodes from digital imagery”, Ph.D. Dissertation, Cedarville University, 2006.
[5] H. E. Lü and P. S. P. Wang, “A comment on “a fast parallel algorithm for thinning digital patterns”, Communications of the ACM, vol.29, no.3, p.239-242, March 1986.
[6] F. Zana and J. C. Klein, “Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation”, IEEE Trans. Image Processing, vol. 10, no. 7, pp.1010 -1019, 2001.
[7] C. H. Gebotys and R. J. Gebotys, “Complexities in DSP software compilation: performance, code size, power, retargetability”, Proceedings of the Thirty-First Hawaii International Conference on System Sciences, vol. 3, pp. 150-156, 1998.
[8] S. M. H. Ho, S. C. L. Yuen, C. P. Hiu, T. C. P. Chau, A. Yan-Qing, P. H. W. Leong, O. C. S. Choy and P. Kong-Pang, “Structured ASIC: Methodology and comparison”, International Conference on Field-Programmable Technology (FPT), pp. 377-380, 2010.
[9] S. Chakraverty, “Cosynthesis of multiprocessor architectures with high availability”, International Conference on VLSI Design, pp. 927-932, 2004.
[10] L. Debowski, “A flexible DSP/FPGA-based hardware platform for power electronics”, Signal Processing Algorithms, Architectures, Arrangements, and Applications Conference Proceedings (SPA), pp. 30-35, 2009.
[11] E. R. Urbach and M. H. F. Wilkinson, “Efficient 2-D grayscale morphological transformations with arbitrary flat structuring elements”, IEEE Trans. Image Process., vol.17, no.1, pp.1–8, 2008.
[12] P. Dokládal and E. Dokládalová, “Computationally efficient, one-pass algorithm for morphological filters”, J. Vis. Commun. Image Represent, 2011, vol.22, no.5, pp. 411–420.
[13] M. Hassoun, T. Meyer, P. Siqueira, J. Basart, and S. Gopalratnam, “A VLSI gray-scale morphology processor for real-time NDE image processing applications”, SPIE Image Algebra Morphological Image Processing, pp. 370–379, 1990.
[14] R. Lin and E. K. Wong, “Logic gate implementation for gray-scale morphology”, Pattern Recognit. Lett, vol. 13, no. 7, pp. 481–487, 1992.
[15] C. H. Chen and D. L. Yang, “Realization of morphological operations”, IEE Proc. Circuits Devices Systems, vol. 142, no. 6, pp. 364-368, 1995.
[16] L. Lucke and C. Chakrabarti, “A digital-serial architecture for grayscale morphological filtering”, IEEE Trans. Image Processing, vol. 4, no. 3, pp. 387–391, Mar. 1995.
[17] E. R. Dougherty and D. Sinha, “Computational gray-scale mathematical morphology on lattices (a comparator-based image algebra)—Part I: Architecture”, Real-Time Imag., vol. 1, pp. 69–85, 1995.
[18] K. I. Diamantaras and S.Y. Kung, “A linear systolic array for real-time morphological image processing”, J. VLSI Signal Process. Syst., vol. 17, no. 1, pp. 43–55, 1997.
[19] T. Kondo et al, “Pseudo MIMD array processor-AAP2”, in Proc. 13th Symp. Computer Architecture Conf. vol. 14, no. 2, pp. 330–337, 1986.
[20] Thinking Machines Corp, Connection machine model, CM-2 tech. summary, Ver. 5.1, 1989
[21] J. R. Nickolls, “The design of the MasPar MP-1: A cost-effective massively parallel computer”, in Proc. COMPCON, pp. 25–28, 1990.
[22] O. Déforges, N. Normand, and M. Babel, “Fast recursive grayscale morphology operators: from the algorithm to the pipeline architecture”, J. Real-Time Image Process., vol. 8,no. 2, pp. 143–152, 2013
[23] L. Vincent, “Morphological grayscale reconstruction in image analysis: applications and efficient algorithms”, IEEE Trans. Image Processing, vol. 2, no. 2, pp. 176-201, 1993.
[24] N. Lazaros, G. C. Sirakoulis, and A. Gasteratos, “Review of stereo vision algorithms: from software to hardware”, International Journal of Optomechatronics, vol. 2, no. 4, pp. 435-462, 2008.
[25] F. Y. Shih and O. R. Mitchell, “Threshold decomposition of gray-scale morphology into binary morphology”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, nol. 1, pp. 31-42, 1989.
[26] J. Velten and A. Kummert, “Fpga-based implementation of variable sized structuring elements for 2d binary morphological operations”, IEEE International Symposium on Circuits and Systems, pp. 706-709. 2003.
[27] C. H. Huang, “An FPGA-based Point Target Detection System using Morphological Clutter Elimination”, IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2436-2439, 2013.
[28] 陳泓霖,“物件偵測嵌入式硬體加速器設計與實作”,2014
[29] C. H. Chen, T. K. Yao, J. H. Dai, and C. Y. Chen, “RETRACTED: A pipelined multiprocessor system-on-a-chip (SoC) design methodology for streaming signal processing”, Journal of Vibration and Control, vol. 20, no. 2, pp. 163-178, 2014.
[30] C. H. Chen, C. M. Kuo, C. Y. Chen, and J. H. Dai, ”The design and synthesis using hierarchical robotic discrete-event modeling”, Journal of Vibration and Control, vol. 19, no. 11, pp. 1603-1613, 2012.
[31] Omni Vision OV7725 datasheet, Ver. 1, accessed date: 2015/10
[32] Altera, BeMicro Max 10 User Manual, Ver. 1, accessed date: 2015/10
[33] STMicroelectronics, STM32F429 User Manual, Ver. 1,accessed date: 2015/10
[34] C. Creusot and A. Munawar, “Real-Time Barcode Detection in the Wild”, In Applications of Computer Vision (WACV), 2015 IEEE Winter Conference on , pp. 239-245, 2015
[35] M. Katona and L. G. Nyúl, “A novel method for accurate and efficient barcode detection with morphological operations”, In Signal Image Technology and Internet Based Systems (SITIS), 2012 Eighth International Conference on, pp. 307-314, 2012
[36] G. Sörös and C. Flörkemeier, “Blur-resistant joint 1D and 2D barcode localization for smartphones”, In Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia. ACM, pp. 11, 2013
[37] S. Kaur and R. Maini, ”Implementation of Barcode Localization Technique using Morphological Operations”, International Journal of Computer Applications, vol. 97, no. 13, 2014
[38] P. Bodnár and G. N. László, “Barcode detection with morphological operations and clustering”, In Signal Processing, Pattern Recognition, and Applications, Proceedings of the Ninth IASTED International Conference on, pp. 51-57, 2012
[39] [Online.] ZBar, “http://zbar.sourceforge.net/”, accessed date: 2015/10
指導教授 陳慶瀚 審核日期 2015-12-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明