博碩士論文 102552003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.232.99.123
姓名 曾柏耀(Po-Yao Tseng)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 嵌入式人臉偵測系統設計與實作
(Design and Implementation of an Embedded Face Detection System)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-6-18以後開放)
摘要(中) 人臉偵測應用經常搭配著人臉追蹤、人臉辨識等應用,作為後續應用程式的前置處理,本論文提出了一個可改善人臉偵測系統低硬體相依性、低電源供耗、高程式維護性性的人臉偵測系統。首先透過影像積分處理演算法將人臉影像積分求出人臉影像特徵向量,接著使用快速學習演算法篩選出人臉影像特徵,接著透過級聯分類器演算法中各個弱分類器比對加總並判斷出區塊中是否包含有人臉區塊,最後將上述各個演算法透過MIAT方法論將各個演算法分割為獨立的子功能模組,並透過GRAFCET建模工具替各個子模組建立離散事件模型,最後使用軟體合成技術將各個子功能模組獨立程式化,達到高移植性、高程式碼構架性。依實驗結果顯示在硬體相依性、電源供耗、系統架構化等方面皆優於傳統複雜龐大的人臉偵測系統,並透過此研究所提出的人臉偵測系統未來可更輕易的移植進各式嵌入式平台並可更輕易的結合各式應用如人臉辨識、人臉追蹤等。
摘要(英) Face detection is usually used in pre-processing of signals in applications such as face tracking and face recognition. This research proposes an enhanced face detection system that is of low hardware dependency, low power consumption and easy program maintenance.
First of all, the Integral Image computation is used to derive the facial image feature vectors after which the Adaboost algorithm is applied to screen the facial image features. Then the weak classifier of the cascade classifier algorithm calculates and determines the area that contains human faces. Finally, the above-mentioned algorithms are divided into independent sub modules using the MIAT Theory. The GRAFCET modeling tool then builds discrete event model for each sub module. Finally, each sub functional module is written as an independent program so as to form a structure that is highly transferable and programmable. According to the experiment results, the hardware dependency, power consumption and system structure of the new system is better than the traditional complex face detection system. Hence, the face detection system proposed in this research can be easily integrated into all embedded systems and used in various different applications such as face recognition, face tracking and etc.
關鍵字(中) ★ 嵌入式 關鍵字(英)
論文目次 摘要 5
ABSTRACT 6
致謝 7
目錄 5
圖目錄 10
表目錄 13
第一章 緒論 14
1.1研究背景 14
1.2研究目的 17
第二章、人臉偵測系統 18
2.1影像積分 20
2.2特徵選擇 23
2.3級聯分類器 27
2.4人臉特徵抽取 28
2.5機率式神經網路分類器 31
第三章、人臉偵測系統設計 33
3.1 MIAT嵌入式系統設計方法論 33
3.2人臉偵測系統架構 37
3.3影像積分功能模組 45
3.4 Adaboost功能模組 48
3.5 級聯分類器模組 51
3.6 人臉辨識功能模組 53
第四章 實驗 56
4.1實驗環境 56
4.2人臉偵測實驗 64
4.2.1影像積分實驗 66
4.2.2 Adaboost實驗 68
4.2.3級聯分類器實驗 70
4.3人臉偵測性能比較 72
4.3.1人臉偵測電源功率耗費比較 73
4.3.2人臉偵測準確度比較 74
4.3.3人臉偵測時間耗費比較 75
第五章、結論 76
5.1結論 76
5.2未來研究與方向 78
參考文獻 79
附錄一 81
參考文獻 [1] R-L. Hsu, "Face detection in color image," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp 696-706, 2002.
[2] G. Iannizzotto, "Competitive Combination of Multiple Eye Detection and Tracking Techniques", IEEE Transactions on Industrial Electronics, vol. 58, no. 8, pp 3151-3159, 2010.
[3] Pereira Passarinho, and C.J, "Face Tracking in Unconstrained Color Videos with the Recovery of the Location of Lost Faces", IEEE (Revista IEEE America Latina) Latin America Transactions, vol. 13, no. 1, pp. 307-314, 2015.
[4] Gao Wen, Tian Yonghong, Huang Tiejun, Ma Siwei, and Zhang Xianguo, "The IEEE 1857 Standard: Empowering Smart Video Surveillance Systems", IEEE Intelligent Systems, vol. 29, no. 5, pp. 1541-1672, 2013.
[5] U. Uludag, S. Pankanti, S. Prabhakar, and Jain, A.K., "Biometric cryptosystems: issues and challenges", Proceedings of the IEEE, vol. 92, no. 6, pp. 948-960, 2004.
[6] L. Acasandrei, and A. Barriga, "AMBA bus hardware accelerator IP for Viola-Jones face detection", IET Computers & Digital Techniques, , vol. 7, no. 5, pp. 200-209, 2013.
[7] L. Bruzzone, and R. Cossu, "A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps", IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 9, pp. 1984-1996, 2002.
[8] L. Essannouni, and D. Aboutajdine, "Correlation of robust Haar-like feature", Electronics Letters, vol. 47, no. 17, pp. 961-962, 2011.
[9] S. Wu, and H. Nagahashi, "Parameterized AdaBoost: Introducing a Parameter to Speed Up the Training of Real AdaBoost", IEEE Signal Processing Letters, vol. 21, no. 6, pp. 687-691, 2014.
[10] C.A. Perez, V.A. Lazcano and P.A. Estevez, “Real-Time Iris Detection on Coronal-Axis-Rotated Faces”, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 37, no. 5, pp. 971-978, 2007.
[11] M. Gooding, and L. Cohen, “Evaluation of three ATE test environments”, IEEE Aerospace and Electronic Systems Magazine, vol. 12, no. 9, pp. 12-17, 2002
[12] Janarbek Matai, Ali Irturk and Ryan Kastner, "Design and Implementation of an FPGA-based Real-Time Face Recognition System", IEEE International Symposium on Field-Programmable Custom Computing Machines, pp 97-100, 2011.
[13] Shuiying Zhang, Xuebo Jin, Guang Li, "Face detecting algorithm of the Cascade Adaboost on DSP", Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, pp 651-654, 2010
[14] Goksel GUNLU, "DSP BASED MODULAR FACE RECOGNITION SYSTEM", Proceedings of the 4th European DSP in Education and Research Conference, pp 28-31. 2010.
[15] C.H. Chen, C.M. Kuo, C.Y. Chen and J.H. Dai, "The design and synthesis using hierarchical robotic discrete-event modeling", Journal of Vibration and Control, vol.19, no.11, pp.1603–1613, 2013.
[16] A. Torralba, R. Fergus, Freeman, and W.T., "80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 11, pp. 1958-1970, 2008.
[17] O, Peng, "A Fast Integral Image Computing Hardware Architecture With High Power and Area Efficiency", IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 1, pp. 75-79, 2014.
[18] U, Braga-Neto, "Grayscale level connectivity: theory and applications", IEEE Transactions on Image Processing, vol. 13, no. 12, pp. 1567-1580, 2004.
[19] G, Yunlong, "A Dynamic AdaBoost Algorithm With Adaptive Changes of Loss Function", IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 42, no. 6, pp. 1828-1841, 2012.
指導教授 陳慶瀚 審核日期 2016-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明