博碩士論文 102553015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.239.158.36
姓名 林奕宏(I-Hung Lin)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 基於軟體定義無線電矽智產平台之 LTE / LTE-A 下行同步與細胞搜尋實現
(Design and Implementation of LTE / LTE-A Downlink Synchronization and Cell Search on Software-Defined Radio Silicon IP Platform)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討
★ 大數量且有限天線之多輸入多輸出系統效能分析★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
★ 應用功率控制之行動載具速度區段檢測技術★ 多級威能濾波器演算法應用在瑞雷衰退通道預測之最佳化設計
★ 多輸入多輸出正交分頻多工系統之調適性通道估測★ 多載波直接序列分碼多重進接系統之調適性位元、子載波、功率和展頻因子配置機制
★ 子空間方法應用於向下鏈結多載波分碼多重進接系統頻率偏移估測之探討★ 正交分頻多工系統中之方位角估測及應用在接收器之設計
★ 多級威能濾波器之應用於向上鏈結多載波分碼多重進接系統之接收器設計★ 適用於離散多頻系統之快速交替性的多重使用者位元負載演算法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文利用市面上兩種常見的軟體定義無線電 ( SDR ) 平台,RTL-SDR 與 USRP 來實現真實 LTE / LTE-A 下行同步與細胞搜尋。分析規格內建之符幀架構,採純軟體方式偵測基頻樣本內之主要同步信號 ( PSS ) 與第二同步信號 ( SSS ),並完成載波頻率誤差 ( CFO ) 校正與時間同步來達到初始細胞搜尋之目標。輔以矽智產 ( silicon IP ) 硬體特性之了解,加以消除真實環境接收信號的非理想效應,如脈衝雜訊、直流 ( DC ) 成分與 IQ 不匹配,來維持正交分頻多工 ( OFDM ) 架構之平行通道的概念。
摘要(英) Using 2 types of the most popular software-defined ratio ( SDR ) platform, RTL-SDR and USRP, to design and implement a real world LTE / LTE-A downlink synchronization and cell search receiver. According to the specification of frame structure, it can detect primary synchronization signal ( PSS ) and secondary synchronization signal ( SSS ) from baseband samples by pure software methodology. In order to accomplish cell search target, carrier frequency offset ( CFO ) calibration and timing synchronization were also finished. After understanding characteristics of SIP ( silicon IP ) hardware, mitigating the non-ideal effects of real world condition, i.e. impulse noise, direct current ( DC ) and IQ mismatch, to maintain parallel channel concepts of orthogonal frequency-division multiplexing ( OFDM ).
關鍵字(中) ★ 軟體定義無線電
★ 矽智產平台
★ 下行同步
★ 細胞搜尋
★ 符幀架構
★ 主要同步信號
★ 第二同步信號
★ 載波頻率誤差
★ 時間同步
★ 脈衝雜訊消除
★ 減少直流成分
★ 校正不匹配因子
關鍵字(英) ★ SDR
★ software-defined radio
★ silicon IP platform
★ downlink synchronization
★ cell search
★ frame structure
★ PSS
★ primary synchronization signal
★ SSS
★ secondary synchronization signal
★ carrier frequency offset
★ timing synchronization
★ impulse noise mitigation
★ DC Offset cancellation
★ IQ mismatch calibration
論文目次 摘要 ……………………………………………………………………………………………………………………….. i
Abstract ………………………………………………………………………………………………………………….. ii
致謝 ……………………………………………………………………………………………………………………… iii
目錄 ……………………………………………………………………………………………………………………… iv
圖目錄 ………………………………………………………………………………………………………………….. vi
表目錄 ………………………………………………………………………………………………………………….. xi
第一章、 研究動機 ……………………………………………………………………………………………… 1
第二章、 背景知識 ……………………………………………………………………………………………… 4
2-1、正交分頻多工 ………………………………………………………………………………………… 4
2-2、長期演進技術符幀架構 ………………………………………………………………………. 10
2-3、軟體定義無線電 ………………………………………………………………………………….. 18
第三章、 軟體區塊架構 ……………………………………………………………………………. 29
3-1、脈衝雜訊消除 ………………………………………………………………………………………. 31
3-2、減少直流成分偏移 ………………………………………………………………………………. 42
3-3、校正 IQ 不匹配因子 …………………………………………………………………………… 49
3-4、時間同步之符元邊界 …………………………………………………………………………… 65
3-5、進階時間同步之載波頻率偏移 …………………………………………………………… 75
3-6、細胞搜尋與識別 ………………………………………………………………………………….. 82
第四章、 經驗、結論與未來工作 …………………………………………………………… 88
4-1、SDR 平台操作經驗 ……………………………………………………………………………… 88
4-2、結論與未來工作 ………………………………………………………………………………….. 94
參考文獻 …………………………………………………………………………………………………………….. 96
附錄 ………………………………………………………………………………………………………………….. 104
附錄一、LTE / LTE-A Release 11 Operating Bands …………… 104
附錄二、如何查詢所使用之基地台頻段 ………………………………………………… 105
附錄三、以 Matlab 內建函數完成 LTE DLSCH + PDSCH 傳送與接收模擬 …………………………………………………………………………………………………………………………… 106
參考文獻 3-1. impulse noise mitigation
[1] T.N. Zogakis, P.S. Chow, N.T. Aslanis and J.M. Cioffi, “Impulse noise mitigation strategies for multicarrier modulation,” IEEE International Conference on Communications, vol. 2, 1993.
[2] C. Nokes et al, “Detection and removal of clipping in multicarrier receivers.” EP 1 043 874 A2, April 1999.
[3] M. Sliskovic, “Signal processing algorithm for OFDM channel with impluse noise,” IEEE 7th Intrnational Conference on Electronics, Circuit and Systems, vol. 1, 2000
[4] H. A. Suraweera, C. Chai, J. Shentu, and J. Armstrong, “Analysis of impulse noise mitigation techniques for digital television systems,” in Proc. 2003 Int. OFDM Workshop, pp. 172–176.
[5] Ulrich Epple, Dmitriy Shutin and Michael Schnell, “Mitigation of Impulsive Frequency-Selective Interference in OFDM Based Systems,” IEEE Wireless Communications Letters, vol. 1, no. 5, 2012.
[6] S. V. Zhidkov, “Analysis and Comparison of Several Simple Impulsive Noise Mitigation Schemes for OFDM Receivers,” IEEE Trans. Commun., vol. 56, pp. 5–9, Jan. 2008.
[7] U. Epple, K. Shibli, and M. Schnell, “Investigation of Blanking Nonlinearity in OFDM Systems,” in Proc. IEEE Int. Commun. Conf., 2011, pp.1–5.

3-2. DC offset cancellation
[1] Mamiko Inamori, Shuzo Takayama and Yukitoshi Sanada, “Frequency domain IQ imbalance estimation in the presence of DC offset and frequency offset,“ IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, 2009.
[2] Mamiko Inamori, Anas M. Bostamam, Yukitoshi Sanada and Hideki Minami, “Frequency Offset Estimation Scheme in the Presence of Time-Varying DC Offset and IQ imbalance for OFDM Direct Conversion Receivers,” IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 2007.
[3] Mamiko Inamori, Anas M. Bostaman, Yukitoshi Sanada, and Hideki Minami, “IQ Imbalance Compensation Scheme in the Presence of Frequency Offset and Dynamic DC Offset for a Direct Conversion Receiver”, IEEE Trans. Wireleass commun., vol. 8, no. 5, pp. 2214-2220, May 1999.
[4] Chi-Hsiao Yih, “Analysis and Compensation of DC Offset in OFDM Systems Over Frequency-Selective Rayleigh Fading Channels,” IEEE Transactions on Vehicular Technology, vol. 58, no. 7, 2009.
[5] C.H. Yih, “BER analysis of OFDM systems impaired by DC offset and carrier frequency offset in multipath fading channels,” IEEE Commun. Lett., vol. 11, no. 11, pp. 842-844, Nov. 2007.
[6] Yujie Xia, Guangliang Ren, “A high accuracy DC offset estimation scheme for OFDM based WLAN,” IEEE International Conference on Signal Processing, Communications and Computing, 2011.
[7] Hongwei Zou, Yi Wan, “A novel subspace-based carrier frequency offset estimator for OFDM-based WLANs with DC offset,” IEEE 2nd International Conference on Consumer Electronics, Communications and Networks, 2012.
[8] Hai Lin, Herath Mudiyanselage Sankassa, Bandara Senevirathna and Katsumi Yamashita, “Blind Estimation of Carrier Frequency Offset and DC Offset for OFDM Systems,” IEEE Transactions on Communications, vol. 56, no. 5, pp. 704-707, May 2008.
[9] Zhiwen Zhu, Xinping Huang, Mario Caron and Henry Leung, “Blind Self-Calibration Technique for I/Q Imbalances and DC-Offsets,” IEEE Transactions on Circuits and Systems, vol. 61, no. 6, 2014.
[10] A. A. Abidi, “Direct-conversion radio transceivers for digital communications”, IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1399-1410, Dec. 1995.
[11] Yanyan Zhuang, Yi Wan, “LS-based joint estimation of carrier frequency offset, I/Q imbalance and DC offset for OFDM-based WLANs,” IEEE International Conference on Mechatronic Sciences, Electric Engineering and Computer, 2013.
[12] Hyung Chul Park, Hyung-Sun Lim, Chang-Seok Lee and Jong-Won Yu, “Unified DC offset cancellation and I/Q regeneration with carrier phase recovery in five-port junction based direct receivers,” European Microwave Conference, 2007.
[13] B. Razavi, “Design Considerations for Direct-Conversion Receivers”, IEEE Trans. Circuits and Systems II, vol. 44, no. 6, pp. 428-435, June 1997.

3-3. IQ mismatch calibration
[1] Wooseok Nam, Heejin Roh, Jungwon Lee and Inyup Kang, “Blind Adaptive I/Q Imbalance Compensation Algorithms for Direct-Conversion Receivers,” IEEE Signal Processing Letters, vol. 19, no. 8, pp. 475-478, 2012.
[2] S. Mirabbasi, K Martin, “Classical and modern receiver architectures,” IEEE Communications Magazine, vol. 38, no. 11, 2000.
[3] M. Valkama, M.Renfors and V. Koivunen, “Blind signal estimation in conjugate signal models with application to I/Q imbalance compensation,” IEEE Signal Processing Letters, vol. 12, no. 11, pp. 733-736, 2005.
[4] Lauri Anttila, Mikko Valkama and Markku Renfors, “Circularity-Based I/Q Imbalance Compensation in Wideband Direct-Conversion Receivers,” IEEE Transactions on Vehicular Technology, vol. 57, no. 4, 2008.
[5] E. Cetin, I. Kale and R.C.S. Morling, “Adaptive Self-Calibrating Image Rejection Receiver,” IEEE International Conference on Communications, vol. 5, 2004
[6] B. Razavi, “RF Microelectronics,” Prentice Hall, 1998
[7] H.-Y. Tseng, W.-J. Cho, T.-K. Chang, S.-M. Phoong and Y.-P. Lin, “Compensation of IQ imbalance and DC offset for OFDM transmission over frequency selective channels, ” IEEE International Conference on Communications, pp. 641-645, 2008.
[8] Niels A. Moseley, Cornelis H. Slump, “A low-complexity feed-forward I/Q imbalance compensation algorithm,” 17th Annual Workshop on Circuits, Systems and Signal Processing, pp. 158-164, ProRISC, 2006
[9] A.R. Wright, P.A. Naylor, “Blind IQ mismatch compensation in OFDM direct conversion receivers,” IEE/EURASIP 2nd Conference on DSP Enable Radio, pp. 1-6, 2005.
[10] S. Fouladifard, H. Shafiee, “A new technique for estimation and compensation of IQ imbalance in OFDM receivers,” IEEE 8th Internation Conference on Communication Systems, vol. 1, pp. 224-228, 2002.
[11] S. Fouladifard, H. Shafiee, “Calibration of IQ Imbalance in OFDM Transceivers,” IEEE International Conference on Communications, vol. 3, pp. 2081-2085, 2003.
[12] S. Fouladifard, H. Shafiee, “On adaptive cancellation of IQ mismatch in OFDM receivers,” IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 4, pp.564-567, 2003.
[13] Hassan Zareian, Vahid TabaTaba Vakili, “Analytical BER performance of M-QAM-OFDM systems in the presence of IQ imbalance,” IEEE International Conference on Wireless and Optical Commuincations Networks, 2007.
[14] L. Der, B. Razavi, “A 2-GHz CMOS Image-Reject Receiver with LMS Calibration,” IEEE Journal of Solid-State Circuits, vol. 38, no. 2, Feb. 2003.
[15] Tod Paulus (2005), “Apparatus and Method for Digital Image Correction in a Receiver,” United States Patent No. 2005 0070239 A1

3-4. timing synchronization -- symbol boundary
[1] D. Chu, “Polyphase codes with good periodic correlation properties ( Corresp. ),“ IEEE Transaction on Information Theory, vol. 18, no. 4, pp. 531-532, 1972.
[2] Cho, Y.S., Kim J., Yang W.Y. and Kang C. G., “MIMO-OFDM wireless communications with Matlab,” John Wiley & Sons, Asia, IEEE Press, 2010, pp. 153-161.
[3] Zhi Yan, Gang Sun and Xin Wang, “A Novel Initial Cell Search Scheme in TD-LTE, “ IEEE 73rd Vehicular Technology Conference, 2011 Spring.
[4] “Comparison of One-SCH and Two-SCH schemes for EUTRA Cell Search,” ETRI, 3GPP TSG RAN WG1 Meeting #45, Shanghai, China, R1-061117, May 8-12, 2006.
[5] Y. Yu, Q. Zhu, “A Novel Time and Frequency Schronization for 3GPP LTE Cell Search,” IEEE 8th International Conference on Wireless Communications, Networking and Mobile Computing, 2012.
[6] Xin Wang, Xiaolin Hou and Atsushi Harada, “Low-complexity synchronization method for symbol and frame timing in LTE systems,” IEEE 18th Asia-Pacific Conference on Communications, 2012.
[7] Ameneh Golnari, Mahdi Shabany, Alireza Nezamalhosseini and Glenn Gulak, “Design and Implementation of Time and Frequency Synchronization in LTE,” IEEE Transaction on Very Large Scale Integartion ( VLSI ) Systems, vol. 23, no. 12, pp. 2970-2982, 2015.
[8] Chixiang Ma, HAO Cao and Ping Lin, “A low-power low-cost design of primary synchronization signal detection,” IEEE Transaction on Very Large Scale Integartion ( VLSI ) Systems, vol. 20, no. 7, pp. 1161-1166, 2012.

3-5. advanced timing synchnization – carrier frequency offset
[1] Feng Wang, Yu Zhu, “An Efficient CFO Estimation Algorithm for the Downlink of 3GPP-LTE,“ IEEE International Conference on Wireless Communications and Signal Processing, 2011
[2] Cho, Y.S., Kim J., Yang W.Y. and Kang C. G., “MIMO-OFDM wireless communications with Matlab”, John Wiley & Sons, Asia, IEEE Press, 2010, pp. 153-161.
[3] Bassem Ibrahim, Amr Wassal, Khaled Sharaf and Hisham Haddara, “Design and Implementation of Synchronization and Cell Search Algorithms for LTE Receiver,” IEEE 32nd National Radio Science Conference, pp. 313-322, March 2015.
[4] Dan Wang, Weiping Shi and Xiaowen Li, “Low-complexity carrier frequency offset estimation algorithm in TD-LTE,” IEEE Journal of Networks, vol. 8, no. 10, pp. 2220-2226, Oct. 2013.
[5] K. Vinoth Babu, G. Ramachandra Reddy, Sunit Gupta, Utpal Sharma and Patel Pratik, “Study and analysis of various frequency offset correlation scheme in orthogonal frequency division multiplxing ( OFDM ) based long term evaluation ( LTE ) systems,” IET 4th International Conference on Adavnces in Recent Technologies in Communication and Computing, pp. 214-217, 2012.
[6] Shoujun Huang, Yongtao Su, Ying He and Shan Tang, “Joint time and frequency offset estimation in LTE downlink,” IEEE 7th International Conference on Communications and Networking in China, pp. 394-398, 2012.

3-6. cell search and identity
[1] Yingming Tsai, Guodong Zhang, Donald Grieco, Fatih Ozluturk and Xiaodong Wang, “Cell Search in 3GPP long term evolution systems,” IEEE Vehicular Technology Magazine, vol. 2, no. 2, 2007.
[2] Zhi Yan, Gang Sun and Xin Wang, “A Novel Initial Cell Search Scheme in TD-LTE, “ IEEE 73rd Vehicular Technology Conference, 2011 Spring.
[3] J. Kim, J. Han, H. Roth and H. Choi, “SSS Detection Method for Initial Cell Search in 3GPP LTE FDD/TDD Dual Mode Receiver,” IEEE ISCIT, pp. 199-203, 2009
[4] Branislav M. Popovic and Oskar Mauritz, “ Generalized Chirp-Like Sequences With Zero Correlation Zone,” IEEE Transactions on Information Theory, vol. 56, no. 6, 2010.
[5] B.M, Popovic, “Generalized Chirp-Like Polyphase Sequences with Optimun Correlation Properties,“ IEEE Trans. On Information Theory, vol. 38, pp. 1406-1409, July 1992.
[6] Essam A. Sourour, Mohannad Amer, “ Frequency domain synchronization and cell search in 3GPP LTE systems,” IEEE International Conference on Computing, Networking and Communications, pp. 341-345, 2015.
[7] Hendra Setiawan, Hiroshi Ochi, “A low complexity physical-layer identity detection for 3GPP long term evolution,” IEEE 12th International Conference on Advanced Communication Technology, vol. 1, pp. 8-13, 2010.
[8] Hendra Setiawan, “LTE physical layer identity detection: frequency vs time domain schemes,” IEEE International Conference on Communications, 2011.
[9] Chun-Yuan Chu, I-Wei Lai, Yi-Yao Lan and Tzi-Dar Chiueh, “Efficient Sequential Integer CFO and Sector Identity Detection for LTE Cell Search,“ IEEE Wireless Communications Letters, vol. 3, no. 4, pp. 389-392, 2014.

4-1. SDR 操作經驗
[1] 張德豐 ( 2012 )。Matlab 通訊工程模擬。台北:五南圖書。
[2] 張智星 ( 2013 )。Matlab 程式設計進階篇第二版。台北:碁豐資訊。
[3] 鈦思科技 ( 2007 )。通訊系統設計與模擬:使用 Matlab / Simulink。台北:鈦思科技。
[4] Jose A. del Peral-Rosado, Juan M. Parro-Jimenez, Jose A. Lopez-Salcedo, Gonzalo Seco-Granados, Paolo Crosta, Francesca Zanier and Massimo Crisci, “Comparative Result Analysis on Positioning with Real LTE Signals and Low-Cost Hardware Platforms,” IEEE 7th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, 2014.

綜合參考文獻
[1] 張盛富、張嘉展 ( 2016 )。無線通訊射頻晶片模組設計:射頻系統篇。台北:全華圖書。
[2] 高曜煌 ( 2016 )。射頻技術與行動通訊。台北:全華圖書。
[3] 丁奇、陽楨 ( 2013 )。大話行動通訊。台北:佳魁資訊。
[4] 李大嵩、李明峻、李長甚、黃崇榮 ( 2016 )。第四代行動通訊系統原理與實務第二版。台北:全華圖書。
指導教授 陳永芳(Yung-Fang Chen) 審核日期 2020-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明