博碩士論文 102581009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:34.229.126.29
姓名 張介寬(Jin-kuan Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 多功能太陽能微型逆變器之研製
(Design and Implementation of Multi-Functional PV Micro Inverters)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 應用於儲能系統之智慧型太陽光電功率平滑化控制
★ 利用智慧型控制之三相主動式電力濾波器的研製★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製
★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台
★ 智慧型同動控制之龍門式定位平台及應用★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統
★ 智慧型控制雙饋式感應風力發電系統之研製★ 無感測器直流變頻壓縮機驅動系統之研製
★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統★ 多重地網系統之人身安全驗證與模擬
★ 利用智慧型控制與主動式直軸訊號注入法之孤島偵測研究★ 具主動功因調節之LED驅動器研製
★ 應用於輕型電動車之智慧型錯誤容忍控制六相永磁同步馬達驅動系統★ 智慧型控制數位化鋰錳電池充電器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文研究克服二次漣波頻寬限制之太陽能微型變流器。所提出之太陽能微型變流器為兩級電路,前級使用主動拑位電流源推挽式轉換器,後級使用全橋式變流器。前級提出利用帶通濾波器產生前饋控制信號以降低原本二次漣波電壓控制信號,達成太陽能側較低二次漣波電壓;後級則提出利用積分器降低直流鏈電壓回授信號中的二次漣波電壓,以提高變流器的直流鏈電壓控制迴路頻寬,並利用變流器的電流振幅命令換算輸入電流信號,達成無輸入電流感測器之最大功率點追蹤。此外,針對多組太陽能微型變流器之並聯,提出新型變流器自主控制策略,模組之間無需通訊連結,得以使變流器除了併網模式外,亦可作在線互動模式及獨立模式之多模式操作。於獨立模式下即便無蓄電池儲能亦得以獨立供電,於在線互動模式下則可以滿足發電自用,達成無逆送功率之控制。最後,本論文設計240W之太陽能微型變流器,搭配德州儀器TMS320F28335數位信號處理器實現提出的控制策略,由一些模擬與實驗結果來證明所提出的控制方法有效性及可行性。
摘要(英) This dissertation studies the photovoltaic micro inverter which can overcome second-order ripple bandwidth limitation. The proposed two-stage photovoltaic (PV) inverter includes the front-end active-clamped current-fed push-pull DC-DC converter and the rear-end full-bridge DC-AC inverter. In the front-end, a feedforward control signal is generated by a band-pass filter to reduce the original second-order ripple of voltage control signal. The goal of no second-order ripple at the photovoltaic side is also achieved. In the rear-end, the use of an integrator to decrease the second-order ripple in the DC bus feedback voltage signal is proposed. Moreover, the maximum power point tracking of the PV module can be obtained without using the current sensor, the input current signal is obtained using the parameters of the inverter. In addition, for the multi-module PV micro inverter in parallel operating, a novel converter autonomous control strategy with no communication between the modules is presented. Therefore, multi-mode operation including grid-connected mode, line-interactive mode and stand-alone mode of the inverter is proposed. In the stand-alone mode, it can be an independent power supply even if there is no battery energy storage. Additionally, in the line-interactive mode, it can meet the power generation for self-support and achieve non-reverse power control. Finally, a 240W photovoltaic micro inverter with Texas Instruments TMS320F28335 digital signal processor (DSP) to achieve the proposed control strategies is built. The effectiveness and feasibility of proposed control methods are proved by some simulation and experimental results.
關鍵字(中) ★ 二次漣波電壓
★ 主動拑位電流源推挽式轉換器
★ 無感測輸入電流
★ 最大功率點追蹤
★ 變流器自主控制
關鍵字(英) ★ second-order ripple voltage
★ active-clamped current-fed push-pull DC-DC converter
★ input current sensorless
★ maximum power point tracking
★ autonomous control of inverter
論文目次 摘要 I
Abstract III
Acronyms V
Nomenclature VII
誌 謝 X
Contents XI
List of Figures XIII
List of Tables XVI
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivations 3
1.3 Literature Review 6
1.4 Organization 9
Chapter 2 Analysis and Design of Grid -Connected Inverter Circuit 12
2.1 Analysis and Design of Inverter Control Circuit 12
2.1.1 Design of the Inverter Current Loop Controller 15
2.1.2 Design of the Inverter Voltage Loop Controller 16
2.2 Inverter Voltage Loop Controller Overcomes the Second- Order Ripple Bandwidth Limitation Design 20
2.3 Grid Synchronization and Islanding Protection Design 23
2.3.1 Phase-Locked Loop (PLL) Design 23
2.3.2 Islanding Protection Design 24
2.4 Inverter Circuit Simulation 29
Chapter 3 Circuit Analysis and Controller Design of Active-Clamped Current-Fed Push-Pull DC-DC Converter 31
3.1 Active-Clamped Current-Fed Push-Pull DC-DC Converter Working Principle 31
3.1.1 Boost Mode (D >0.5) 36
3.1.2 Buck Mode (D<0.5) 39
3.2 Active-Clamped Current-Fed Push-Pull DC-DC Converter Designed to Reduce Second-Order Ripple Voltage 42
3.3 Circuit Simulation of Active-Clamped Current-Fed Push-Pull DC-DC Converter 48
Chapter 4 MPPT Analysis and Controller Design 50
4.1 Introduction to PV Modules 50
4.2 MPPT Method 55
4.2.1 Voltage Feedback Method 56
4.2.2 Power Feedback Method 56
4.2.3 Linear Approximation 57
4.2.4 Actual Measurement Method 58
4.2.5 P&O Method 58
4.2.6 INC Method 60
4.3 MPPT Controller Design 63
4.4 Simulation and Experimental Results 64
4.4.1 Simulation 64
4.4.2 Experimental Setup 66
4.4.3 Experimental Results 73
Chapter 5 Parallel of PV Micro Inverter 78
5.1 Parallel Architecture of PV Micro Inverter 78
5.2 Configuration and Control of proposed PV Micro Inverter 80
5.3 Parallel Method of PV Micro Inverter 89
5.4 Simulation and Experimental Results 95
5.4.1 Simulation 95
5.4.2 Experimental Results 98
Chapter 6 Conclusions and Future Research Directions 103
6.1 Conclusions 103
6.2 Suggestions for Future Works 105
References 106
Vita 113
參考文獻
[1] United nations, “Kyoto Protocol to the united nations framework convention on climate change”, 1998.
[2] EPIA, “Global market outlook for solar power 2015-2019,” Jan. 2016.
[3] “Energy and Power,” IEEE Aerospace and Electronic Systems Magazine, vol. 15, no 10, pp. 19-26, 2000.
[4] German Advisory Council on Global Change, 2003.
[5] “Technology Roadmap - Wind energy,” International Energy Agency , 2013.
[6] Energy Bureau of the Ministry of Economic Affairs, “Energy industry technology white paper,” 2010.
[7] D. M. Scholten, N. Ertugrul, and W. L. Soong, “Micro-inverters in small scale PV systems: A review and future directions,” Australasian Universities Power Engineering Conf. (AUPEC), Hobart, Australia, pp. 1-6, 29, Sep. 2013.
[8] S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “A boost converter with capacitor multiplier and coupled inductor for AC module applications,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1503-1511, Apr. 2013.
[9] M. Boztepe, F. Guinjoan, G. Velasco-Quesada, S. Silvestre, A. Chouder, and E.Karatepe, “Global MPPT scheme for photovoltaic string inverters based on restricted voltage window search algorithm,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3302-3312, July 2014.
[10] M. A. Rezaei, K. Lee, A.Q. Huang, “A high-efficiency flyback micro-inverter with a new adaptive snubber for photovoltaic applications,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 318–327, Jan. 2016.
[11] S. Kim and J. K. Seok, “Induction motor control with a small DC-link capacitor inverter fed by three-phase diode front-end rectifiers,” IEEE Trans. Power Electron., vol. 30, no. 5, pp. 2713-2720, Jan. 2015
[12] B. Karanayil, V. G. Agelidis and J. Pou, “Evaluation of DC-link decoupling using electrolytic or polypropylene film capacitors in three-phase grid-connected photovoltaic inverters,” IECON 2013 - 39th Annual Conf. on IEEE Ind. Electron. Society, Vienna, Austria, pp. 6980-6986, Nov. 2013.
[13] F. Schimpf and L. Norum, “Effective use of film capacitors in single-phase PV-inverters by active power decoupling,” IECON 2010 - 36th Annual Conf. on IEEE Ind. Electron. Society, Glendale, AZ, USA, pp. 2784-2789, Dec. 2010.
[14] M. Cespedes, and J. Sun, “Impedance modeling and analysis of grid-connected voltage-source converters,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1254-1261, 2014.
[15] P. R. Prasanna, and A. K. Rathore, “Analysis, design, and experimental results of a novel soft-Switching snubberless current-fed half-bridge front-end converter-based PV inverter,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3219–3230, 2013.
[16] A. Kulkarni, and V. John, “Mitigation of lower order harmonics in a grid-connected single-phase PV inverter,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5024–5037, 2013.
[17] Z. Sinan, F. Deveci, and M. Boztepe, “Volt-second-based control method for discontinuous conduction mode flyback micro-inverters to improve total harmonic distortion,” IET Proc. Power Electron., vol. 6, no. 7, pp. 1600–1607, 2013.
[18] S. Daher, J. Schmid, and F. L. M. Antunes, “Multilevel inverter topologies for stand-alone PV systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2703–2712, 2008.
[19] J. Minsoo, and V. G. Agelidis, “A boost-inverter-based, battery-supported, fuel-cell sourced three-phase stand-alone power supply,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6472–6480, 2014.
[20] S. M. H. Nabavi, L. Meek and M. Abshar, “Dynamic performance response evaluation of solar gate: zero export injection equipment for photovoltaic power generation systems,” Australasian Universities Power Engineering Conf. (AUPEC), Perth, WA, Australia, pp. 1-5, 2014.
[21] Z. Yewdall, “AC coupling–methods,” in Issue 162, Sep., 2014, https://www.homepower.com/articles/solar-electricity/design-installation/ac-coupling-methods.
[22] J. Schwartz, “Outback power’s FLEXcoupled AC-coupling system,” in Issue 159, Mar. 2014, https://www.homepower.com/articles/solar-electricity.
[23] Enphase Energy applications note, “AC coupling of enphase micro-inverters to battery based systems,” 2014.
[24] SolarEdge datasheet, Solar edge AC coupled inverter.
[25] “Zero export PV solution with SNA power control module,” SMA Technical Information, SMA Solar Technology AG.
[26] T. F. Wu, Y. E. Wu, H. M. Hsieh, and Y.K. Chen, “Current weighting distribution control strategy for multi-inverter systems to achieve current sharing,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 160–168, 2007.
[27] Y. Zhang, M. Yu, F. Liu, and Y. Kang, “Instantaneous current-sharing control strategy for parallel operation of UPS modules using virtual impedance,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 432–440, 2013.
[28] F. Ji, L. Mu and G. Zhu, “A novel multi-functional photovoltaic micro-inverter and its control strategy,” IEEE 8th International Power Electron. and Motion Control Conf. (IPEMC-ECCE Asia), Hefei, China, pp. 1302-1305, 2016.
[29] R. Kale, S. Thale and V. Agarwal, “Design and implementation of a solar PV panel integrated inverter with multi-mode operation capability,” IEEE 39th Photovoltaic Specialists Conf. (PVSC), Tampa, FL, USA, pp. 2959-2964, 2013.
[30] P. Neshaastegaran and H. R. Karshenas, “A power decoupling technique for single-stage micro inverter in ac-module application,” The 5th Annual International Power Electronics, Drive Systems and Technologies Conf. (PEDSTC 2014), Tehran, Iran, pp. 120-125, Apr. 2014.
[31] H. Hu, Q. Zhang, X. Fang, Z. J. Shen and I. Batarseh, “A single-stage grid-connected PV micro-inverter based on interleaved flyback converter topology,” 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, pp. 1411-1416, Nov. 2011.
[32] Q. Li, and P. Wolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations,” IEEE Trans. Power Electron., vol.23, no. 3, pp. 1320-1333, May 2008.
[33] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1292-1306, Sep. 2005.
[34] S. Daher, J. Schmid, and F. L. M. Antunes, “Multilevel inverter topologies for stand-alone PV systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2703-2712, July 2008.
[35] C. Rodriguez, and G. A. J. Amaratunga, “Long-lifetime power inverter for photovoltaic AC modules, ” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2593-2601, July 2008.
[36] G. S. Seo, B. H. Cho, and K. C. Lee, “Electrolytic capacitor-less PV converter for full lifetime guarantee interfaced with DC distribution,” IEEE International Power Electron. and Motion Control Conf., Harbin, China, pp. 1235-1240, June 2012.
[37] Y. S. Noh, M. N. Kim, J. G. Kim, C. Y. Won, and Y. C. Jung, “Analysis and design of decoupling capacitor for single phase flyback-inverter with active power decoupling circuit,” IEEE International Symposium on Ind. Electron., Taipei, Taiwan, pp. 1-6, May 2013.
[38] H. Hu, S. Harb, N. Kutkut, I. Batarseh, and Z. J. Shen, “A review of power decoupling techniques for micro inverters with three different decoupling capacitor locations in PV systems, ” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2711-2726, June 2013.
[39] B. Karanayil, V. G. Agelidis, and J. Pou, “Performance evaluation of three-phase grid-connected photovoltaic inverters using electrolytic or polypropylene film capacitors, ” IEEE Trans. Sustain. Energy., vol. 5, no 4, pp. 1297-1306, Oct. 2014.
[40] Y. Jia, and Y. Li, “A 200 W grid-connected single phase micro-photovoltaic inverter and its control strategy,” IEEE PES Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Shanghai, China, pp. 1-4, Mar. 2012.
[41] H. J. Jung, and R. Y. Kim, “A second-order harmonic current reduction with a fast dynamic response for a two-stage single-phase grid-connected inverter,” Journal of Electrical Engineering and Technology, vol. 9, no. 6, pp. 742-748, Nov. 2014.
[42] B. Gu, J. Dominic, J. Zhang, L. Z. B. Chen, and J. S. Lai, “Control of electrolyte-free micro-inverter with improved MPPT performance and grid current quality,” IEEE Applied Power Electron. Conf. and Exposition (APEC), Fort Worth, TX, USA, pp. 1788-1792, Mar. 2014.
[43] G. Zhu, X. Ruan, L. Zhang, X. Wang, “On the reduction of second harmonic current and improvement of dynamic response for two-stage single-phase inverter,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 1028-1041, Feb. 2015.
[44] P. M. Almeida, J. L. Duarte, P. F. Ribeiro and P. G. Barbosa, “Repetitive controller for improving grid-connected photovoltaic systems,” IET Power Electron., vol. 7, no. 6, pp. 1466-1474, 2014
[45] Y. Cho and J. S. Lai, “Digital Plug-In Repetitive Controller for Single-Phase Bridgeless PFC Converters,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 165-175, 2013.
[46] S. Jiang, D. Cao, Y. Li, J. Liu and F. Z. Peng, “Low-THD, Fast-Transient, and Cost-Effective Synchronous-Frame Repetitive Controller for Three-Phase UPS Inverters,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2994-3005, 2012.
[47] T. Esram, and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers, vol. 22, no. 2, pp. 439-448, June 2007.
[48] G. C. Hsieh, H. I. Hsieh, C. Y. Tsai, and C. H. Wang, “Photovoltaic power-increment-aided incremental-conductance MPPT with two-phased tracking,” IEEE Trans. Power Electron., vol 28, no. 6, pp. 2895-2911, 2013.
[49] G. J. Kish, J. J. Lee, and P. W. Lehn, “Modelling and control of photovoltaic panels utilising the incremental conductance method for maximum power point tracking,” IET Renew. Power Gener., vol. 6, no. 4, pp. 259-266, Aug. 2012.
[50] F. Ji, L. Mu and G. Zhu, “A novel multi-functional photovoltaic micro-inverter and its control strategy,” IEEE 8th International Power Electron. and Motion Control Conf. (IPEMC-ECCE Asia), Hefei, China, pp. 1302-1305, 2016.
[51] R. Kale, S. Thale and V. Agarwal, “Design and implementation of a solar PV panel integrated inverter with multi-mode operation capability,” IEEE 39th Photovoltaic Specialists Conf. (PVSC), Tampa, FL, USA, pp. 2959-2964, 2013.
[52] C. Bao, X. Ruan, X. Wang, and W. Li, “Step-by-step controller design for LCL-type grid-connected inverter with capacitor-current-feedback active-damping,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1239-1253, Mar. 2014.
[53] Z. Ye, A. Kolwalkar, Y. Zhang, P. Du, and R. Walling, “Evaluation of anti-islanding schemes based on nondetection zone concept,” IEEE Trans. on Power Electron., vol. 19, no. 5, pp. 1171–1176, Sep. 2004.
[54] A. Yafaoui, B. Wu, and S. Kouro, “Improved active frequency drift antiislanding detection method for grid connected photovoltaic systems,” IEEE Transactions on Power Electronics, vol. 27, no. 5, pp. 2367–2375, May 2012.
[55] H. Ma, L. Chen, and Z. Bai, “An active-clamping current-fed push-pull converter for vehicle inverter application and resonance analysis,” IEEE International Symposium on Ind. Electron.(ISIE), Hangzhou, China, pp.160-165, May 2012.
[56] K. W. Hu, J. C. Wang, T. S. Lin, and C. M. Liaw, “A switched-reluctance generator with interleaved interface DC–DC converter,” IEEE Trans. Energy Convers, vol. 30, no. 1, pp. 273-284, Mar. 2015.
[57] T. L. Kottas, Y. S. Boutalis, and A. D. Karlis, “New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks,” IEEE Trans. Energy Convers., vol. 21, no. 3, pp.793-803, Sep. 2006.
[58] Z. Salameh, F. Dagher, and W. A. Lynch, “Step-down maximum power point tracker for photovoltaic system,” Solar Energy, vol. 46, no. 5, pp. 278-282, 1991.
[59] P. Midya, P. T. Kerin, R. J. Turnbull, R. Reppa, and J. Kimball, “Dynamic maximum power point tracker for photovoltaic applications,” IEEE Power Electron. Specialists Conf., Baveno, Italy, vol. 2, pp. 1710-1716, June 1996.
[60] C. Hua, J. Lin, and C. shen, “Implementation of a DSP-controlled photovoltaic system with peak power tracking,” IEEE Trans. on Ind. Electron., vol. 45, no. 1, pp. 99-107, Feb. 1998.
[61] C. R. Sullivan, and M. J. Powers, “A high-efficiency maximum power point tracker for photovoltaic arrays in a solar-powered race vehicle,” IEEE Specialists Conf. on Power Electron., Seattle, WA, USA, pp. 574-580, June 1993.
[62] J. H. R. Enslin, “Maximum power point tracking: A cost saving necessity in solar energy systems,” IEEE IECON′90, Pacific Grove, CA, USA, pp. 1073-1077, Nov. 1990.
[63] J. A. Gow, and C. D. Manning, “Controller arrangement for boost converter systems sourced from solar photovoltaic arrays or other maximum power sources,” IEE Proc.-Electric Power Appl., vol. 147, no. 1, pp. 15-20, Jan. 2000.
[64] C. C. Hua, J. R. Lin, “Fully digital control of distributed photovoltaic power systems,” IEEE International Symposium on Ind. Electron., Pusan, South Korea, vol. 1, pp. 1-6, June 2001.
[65] O. Wasynczuck, “Dynamic behavior of a class of photovoltaic power system,” IEEE Trans. on Power Apparatus and System, vol. 102, no. 9, pp. 3031-3037, 1983.
[66] S. J. Chiang, K. T. Chang and C. Y. Yen, “Residential photovoltaic energy storage system,” IEEE Trans. on Ind. Electron., vol. 45, no. 3, pp. 385-394, Jun 1998.
[67] C. F. Wu, J. X. Chang, and Y. K. Chen, “Summary of solar power supply and lighting system,” Chwa, Taiwan, 2000.
[68] M. Harfman-Todorovic, F. Tao, M. Agamy, D. Dong, X. Liu, L. Garces, R. Zhou, E. Delgado, D. Marabell, and C. Stephens, “A high efficiency PV micro-inverter with grid support functions,” IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, pp. 4244–4250, Sep. 2014.
指導教授 林法正、江炫樟(Faa-Jeng Lin Hsuang-Chang Chiang) 審核日期 2017-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明