博碩士論文 102582605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.12.163.76
姓名 段薇虹(Duong Viet Hang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 複數矩陣分解法及其應用
(Complex Matrix Factorization and Its Applications)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在這個工作中,我們構造了一個新的用於學習複雜領域的低秩投影的降維模型,以在實際應用中獲得直觀特徵和高性能,特別是面部表情識別和圖像聚類。複數矩陣分解(CMF)是一種將復數矩陣分解為兩個複矩陣因子的矩陣分解方法。建議的模型可以在不限制數據符號的情況下執行。這些建議的框架可以應用於負面和正面的數據,從而在實際應用中產生擴展性和有效性。因此,能夠提取諸如短時傅立葉變換之類的複雜特徵的多個操作將被直接使用,而不是其絕對值(幅度/功率譜圖)。
從基本框架CMF開始,我們通過添加圖和稀疏約束來獲得圖的正則化复矩陣分解(GraCMF)和具有稀疏約束的複矩陣分解(SpaCMF),從而開發了兩個約束CMF框架。
此外,我們修改了標準CMF的結構以提供更多的擴展。其中之一就是學習基礎在原始空間(示例)中的示例嵌入复矩陣分解(EE-CMF)。投影复矩陣分解(ProCMF)是作為一種新的學習子空間方法開發的,每個數據點的係數位於一個投影複數矩陣的列向量所跨越的子空間內。簡化的複雜矩陣分解(SiCMF)是一種新的模型,通過凸組合潛在的組件來重構原始實例。
為了滿足非負性要求,非負矩陣分解(NMF)通常使用各種策略來使函數最小化,這導致計算複雜度。相反,與所提出的複雜模型的NMF方法相比,其顯著的優越性在於構建一個無約束優化問題,簡化了提取基礎和內在特徵的框架。
Wirtinger的微積分被用來計算成本函數的導數。梯度下降法被用來解決複雜的優化問題。提出的算法被證明為人臉和麵部表情識別以及圖像聚類提供了有效的特徵。對這些任務的實驗表明,所提出的複雜域上的矩陣分解方法比標準NMF提供一致的更好的識別結果。
摘要(英) In this work, we construct new dimension reduction models for learning low rank projection in the complex domain to obtain both intuitive features and high performance in real applications, particularly face, facial expression recognition and image clustering. Complex matrix factorization (CMF) is a matrix factorization method that decomposes a complex matrix into two complex matrix factors. The proposed models can be performed without limiting the sign of data. These proposed frameworks can be applied to both negative and positive data which yield extension and effectiveness on real-world applications. Therefore, several operations that can extract complex features, such as the short-time Fourier transform, are going to be utilized directly instead of their absolute values (magnitude/power spectrogram).
From the basic framework, CMF, we developed two constrained CMF frameworks by adding graph and sparse constraints to obtain graph regularized complex matrix factorization (GraCMF) and complex matrix factorization with sparsity constraint (SpaCMF).
Besides, we modified the structure of standard CMF to provide more extensions. One of them is exemplar-embed complex matrix factorization (EE-CMF) which a learned base lies within original space (exemplar). Projective complex matrix factorization (ProCMF) was developed as a new learning subspace method that the coefficient of each data point lies within the subspace spanned by the column vectors of one projection complex matrix. Simplical complex matrix factorization (SiCMF), a new model was figured out by convex combining the latent components to reconstruct the original instances.
To satisfy nonnegative requirement, nonnegative matrix factorization (NMF) usually uses various strategies on minimizing a function, which lead to computational complexity. On the contrary, the significant superiority compared to NMF approaches of the proposed complex models is to construct an unconstraint optimization problem that simplified the framework of extracting the basis and intrinsic features.
Wirtinger′s calculus is used to compute the derivative of the cost functions. The gradient descent method is used to solve complex optimization problems. The proposed algorithms are proved to provide effective features for a face and facial expression recognition as well as image clustering. Experiments on these tasks reveal that the proposed methods of matrix factorization on complex domain provide consistently better recognition results than standard NMFs.
關鍵字(中) ★ 計算機視覺
★ 特徵提取
★ 复矩陣分解
關鍵字(英) ★ Computer vision
★ Feature extraction
★ Complex matrix factorization
論文目次 摘要 I
Abstract II
Acknowledge IV
List of symbols and abbreviations VIII
List of Figures XI
List of Tables XIII
Chapter 1 Introduction 1
Chapter 2 Preliminaries 8
2.1 Matrix theory and linear algebra 8
2.2 Lagrangian duality and the Karush-Kuhn-Tucker (KKT) conditions 12
2.3 Complex analysis and optimization in the complex domain 13
2.4 Nonnegative Matrix Factorization 20
Chapter 3 Complex Matrix Factorization and Its Extensions with Hard Constraints 30
3.1 The cosine divergence 30
3.2 Euler’s formula and a space transformation 31
3.3 Complex matrix factorization problems 33
3.4 Complex matrix factorization by gradient descent method 35
3.5 CMFs for face recognition 38
3.6 Conclusion 48

Chapter 4 Structure Modified Complex Matrix Factorization 49
4.1 Introduction 49
4.2 Convex nonnegative matrix factorization and projective nonnegative matrix factorization 50
4.3 Examplar-embeded complex matrix factorization (EE-CMF) 51
4.4 Projective complex matrix factorization (PCMF) 52
4.5 Optimal solutions 52
4.6 EE-CMF and PCMF for facial expression recognition 54
4.7 Conclusion 69

Chapter 5 Bound Constrained Complex Matrix Factorization 71
5.1 Introduction 71
5.2 From NMF to siCMF 72
5.3 SiCMF for data representation 75
5.4 Experiments 76
5.5 Conclusion 80

Chapter 6 Conclusion and Future Works 81
6.1 Conclusion 81
6.2 Future Works 82
Bibliographies 84
Publication List 93
參考文獻 [1] L. Elden, Matrix Methods in Data Mining and Pattern Recognition. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2007.
[2] N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions,” SIAM Rev., vol. 53, no. 2, pp. 217-288, 2011.
[3] K. Fukunaga, Statistical Pattern Recognition, Acadamic, 1990.
[4] A. Hyvarinen, J Karhunen, and E. Oja, Independent Component Analysis, Wiley Interscience, 2001.
[5] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711-720, Jul. 1997.
[6] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization”, Nature, vol. 401, no. 6755, pp. 755-791, 1999.
[7] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Proc. NIPS, 2000, pp. 556-562.
[8] W. Xu, , X.Liu, and Y. Gong, “Document clustering based on non-negative matrix factorization,” in Proc. Int. ACM Conf. on Research and development in information retrieval (SIGIR), pp. 267-273, 2003.
[9] V. P. Pauca, F. Shahnaz, M. W.Berry, and R. J. Plemmons, “Text mining using non-negative matrix factorizations,” in SDM ’04: Proc. of SIAM Int. Conf. on Data Mining, pp. 452-456, 2004
[10] F. Shahnaz, M. W. Berry, V. P. Pauca, and R. J. Plemmons, “Document clustering using nonnegative matrix factorization,” Inf. Process. Manage. vol. 42, pp. 373-386, 2006.
[11] D. Cai, X. He, X. Wu, and J. Han, “Non-negative matrix factorization on manifold,” in Proc. IEEE Int’l Data Mining (ICDM ’08), pp. 63-72, 2008.
[12] D. Cai, X. F. He, J. W. Han, and T. S. Huang, “Graph regularized non-negative matrix factorization for data representation,” IEEE Trans. Patt. Anal. and Mach. Inte., vol. 33, no. 8, pp. 1548-1560, 2011.
[13] A. Cichocki and A. H. Phan, “Fast local algorithms for large scale nonnegative matrix and tensor factorizations,” IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, vol. E92A, no. 3, pp. 708-721, 2009.
[14] C. Fevotte and J. Idier, “Algorithms for nonnegative matrix factorization with the beta-divergence,” Neural Comput., vol. 23, no. 9, pp. 2421-2456, 2011.
[15] C. Fevotte, N. Bertin, and J. L. Durrieu, “Nonnegative matrix factorization with the Itakura-Saito divergence: with application to music analysis,” Neural Comput., vol. 21, no. 3, pp. 793-830, 2009.
[16] Manh-Quan Bui, Viet-Hang Duong, Seksan Mathulaprangsan, Bach-Tung Pham, Justin Lee, Jia-Jing Wang, “A Survey of Polyphonic Sound Event Detection Based on Non-negative Matrix Factorization”, International Computer Syposium, Dec. Taiwan 2016.
[17] P. Hoyer, “Non-negative sparse coding,” in Proc. IEEE Neural Networks for Signal Processing, pp. 557-565, 2002.
[18] P. Hoyer, “Non-negative matrix factorization with sparseness constraints,” J. Mach. Learn., vol. 5, pp. 1457-1469, 2004.
[19] Z. Yuan and E. Oja, “Projective nonnegative matrix factorization for image compression and feature extraction,” in Proc. 14th Scandinavian Conf. Image Anal., Joensuu, Finland, Jun. 2005, pp. 333-342.
[20] H. Li, T. Adal, W. Wang, D. Emge, and A. Cichocki, “NMF with orthogonality constraints and its application to Raman spectroscopy,” VLSI, vol. 48, pp 83-97, 2007.
[21] N. Guan, D. Tao, Z. Luo, and B. Yuan, “Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent,” IEEE Trans. Image Process., vol 20, no. 7, pp. 2030-2048, 2011.
[22] W. S. Zheng, J. H. Lai, S. Liao, and R. He, “Extracting non-negative basis images using pixel dispersion penalty”, Pattern Recognition, vol. 45, no. 8, pp. 2912–2926, 2012.
[23] I. Buciu, N. Nikolaidis, and I. Pitas, “Non-negative matrix factorization in polynomial feature space,” IEEE Trans. Neural Netw., vol. 19, pp. 1090-1100, 2007.
[24] S. Nikitidis, A. Tefas, and I. Pitas, “Projected gradients for subclass discriminant nonnegative subspace learning,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2806-2819, Dec. 2014.
[25] S. Zafeiriou and M. Petrou, “Nonlinear non-negative component analysis algorithms,” IEEE Trans. Image Process., vol. 19, no. 4, pp.1050-1066, 2009.
[26] B. Scholkopf and A. Smola, Learning with Kernels, Cambridge, MA: MIT Press, 2002.
[27] V. H. Duong, W. C. Hsieh, P. T. Bao, J. C. Wang, “An overview of kernel based nonnegative matrix factorization,” International Conference on Orange Technologies (ICOT), 2014, pp. 227-231.
[28] A. Cichocki, R. Zdunek, and S. Amari, “Csisz´ar’s divergences for non-negative matrix factorization: Family of new algorithms,” In Int. Conf. Independent Component Analysis and Signal Separation, pp. 32-39, 2006.
[29] D. Kong, C. Ding, and H. Huang, “Robust nonnegative matrix factorization using L2,1 norm,” In ACM Int. Conf. Information and Knowledge Management, pp. 673–682, 2011.
[30] R. Sandler and M. Lindenbaum, “Nonnegative matrix factorization with earth mover’s distance metric for image analysis,” IEEE Trans. Pattern Anal. Mach. Intell., 33(8):1590–1602, 2011.
[31] N. Guan, D. Tao, Z. Luo, and J. Shawe-Taylor, “MahNMF: Manhattan non-negative matrix factorization,” 2012, [Online]. Available: http://arxiv.org/abs/1207.3438.
[32] A. Cichocki, S. Cruces, and S. Amari, “Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization,” Entropy, vol. 13, no. 1, pp. 134-170, 2011.
[33] T. Pham, Y.-S. Lee, Y.-B. Lin, T.-C. Tai, and J.-C. Wang, “Single channel source separation using sparse NMF and graph regularization,” in Proc. ASE BigData & SocialInformatics.
[34] V. H. Duong, Y. S. Lee, B. T. Pham, S.Mathulaprangsan, P. T. Bao, J. J. Wang, “Spatial dispersion constrained NMF for monaural source separation”, the 10th International Symposium on Chinese Spoken Language Processing, China 2016.
[35] W. C. Hsieh, C. W. Ho, V. H. Duong, Y. S. Lee, J. C. Wang, “2D semi-NMF of scale-frequency map for environmental sound classification,” Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014, pp. 1-4.
[36] V. H. Duong, B. T. Pham, P. T. Bao, J. J. Wang, “NMF-based image segmentation”, IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), 2016, pp. 1-2.
[37] M. Q. Bui, V. H. Duong, S. Mathulaprangsan, Z Z Hong, B. C. Chen, Z. W. Zhong, J. C. Wang, “NMF/NTF-based methods applied for user-guided audio source separation: An overview”, International Conference on Orange Technologies, Dec. Autralia 2016.
[38] V. H. Duong, M. Q. Bui, J. J. Ding, B. T. Pham, Y. H Li, P. T. Bao, J. C. Wang, “Maximum volume constrained graph nonnegative matrix factorization for facial expression recognition”, IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, vol.E100-A, no.12, Dec. 2017.
[39] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, 2004
[40] J. M. Borwein and A. S. Lewis, Convex analysis and nonlinear optimization: Theory and Examples, Springer-Verlag, 2006.
[41] Erwin Kreyszig, Advanced engineering mathematics, International Student Version, John Wiley and Sons, 2011.
[42] B. P. Palka, An introduction to complex function theory, Springer, 1991
[43] M. J. Ablowitz and A. S. Fokas, Complex variables, Cambridge, 2003.
[44] M. Faijul Amin. “Wirtinger calculus based gradient descent and Levenberg-Marquardt learning algorithms in complex-valued neural networks,” Lecture Notes in Computer Science, 2011
[45] A. Hjorunges and D. Gesbert, “Complex-valued matrix differentiation: Techniques and Key Results," IEEE Trans. Signal Process., vol. 55, no. 6, pp. 2740-2746, 2007.
[46] J. R. Magnus and H. Neudecker, Matrix differntail calculus with application in statistics and econometrics, Essex, England: John Wiley & Sons, Inc., 1988.
[47] D. P. Mandic and V. S. L. Goh. 2009. Complex valued nonlinear adaptive filters: noncircularity, widely linear and neural models. Chichester, U.K. Wiley.
[48] A. van den Bos. 1994. Complex gradient and Hessian. IEEE Proceedings -Vision, Image and Signal Processing 141, 380-382.
[49] Strang, Gilbert, Linear algebra and its applications (4th ed.), Stamford, CT: Cengage Learning, pp. 154-155, 2005.
[50] P. Paatero and U. Tapper, “Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values,” Environ-metrics, vol. 5, pp. 111-126, 1994.
[51] J. Brunet, P. Tamayo, T.R. Golub, and J.P. Mesirov, “Metagenes and molecular pattern discovery using matrix factorization,” National Academy of Sciences, vol. 101, no. 12, pp. 4164-4169, 2004.
[52] Y. Gao and G. Church, “Improving molecular cancer class discovery through sparse non-negative matrix factorization,” Bioinformatics, vol. 21, no. 21, pp. 3970-3975, 2005.
[53] C. H. Cheng, D. S. Huang, L. Zhang, and X. Z. Kong, “Tumor clustering using nonnegative matrix factorization with gene selection,” IEEE Trans. Info. Tech. Biomedicine, vol. 13, no. 4, pp. 599-607, 2009.
[54] T. Virtanen, “Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria,” IEEE Trans. On Audio, Speech, and Language Processing, vol. 15, no. 3, pp. 1066-1074, 2007.
[55] A. Cichocki, R. Zdunek, and S. Amari, “Csisz´ar’s divergences for non-negative matrix factorization: Family of new algorithms,” In Proc. Int’l Conf. Independent Component Analysis and Blind Signal Separation, 2006, pp. 32-39.
[56] A. Cichocki, S. Amari, R. Zdunek, R. Kompass, G. Hori, and Z. He, “Extended smart algorithms for non-negative matrix factorization,” ICAISC, LNCS (LNAI), vol. 4029, pp. 548-562. Springer, Heidelberg (2006).
[57] W. Liu, K. Yuan, and D. Ye, “On alpha-divergence based nonnegative matrix factorization for clustering cancer gene expression dat,” Artif. Intell. Med, vol.44, no. 1, pp.1-5, 2008.
[58] S. Zhang, W. Wang, J. Ford, and F. Makedon “Learning from incomplete ratings using non-negative matrix factorization,” Proc. of SIAM Int. Conf. on Data Mining, pp. 548-552, 2006.
[59] R. Kompass, “A generalized divergence measure for nonnegative matrix factorization,” Neural Comput., vol. 19, no. 3, pp. 780-791, 2007.
[60] B. Fasel and J. Luettin, “Automatic facial expression analysis: a survey,” Pattern Recogn., vol. 36, no. 1, pp. 259-275, 2003.
[61] I. Buciu and I. Pitas, “A new sparse image representation algorithm applied to facial expression recognition,” Proc. MLSP, 2004, pp. 539-548.
[62] R. Zhi, M. Flierl, Q. Ruan, and W. B. Kleijn, “Graph preserving sparse nonnegative matrix factorization with application to facial expression recognition,” IEEE Trans. Syst. Man Cybern., Part B, Cybern., vol. 41, no. 1, pp. 38-52, 2011.
[63] X. W. Chen and T. Huang, “Facial expression recognition: a clustering-based approach,” Pattern Recogn. Lett., vol. 24, no. 9, pp. 1295-1302, 2003.
[64] S. Nikitidis, A. Tefas, N. Nikolaidis, and I. Pitas, “Subclass discriminant nonnegative matrix factorization for facial image analysis,” Pattern Recogn., vol. 45, no. 12, pp. 4080-4091, 2012.
[65] G. Zhou, S. Xie, Z. Yang, J. M. Yang, and Z. He, “Minimum volume constrained nonnegative matrix factorization: enhanced ability of learning parts,” IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1626-1637, Oct. 2011.
[66] T. Liu, M. Gong, and D. Tao, “Large-cone nonnegative matrix factorization,” IEEE Trans. Neural Netw. Learn. Syst., Jun. 2016, doi: 10.1109/TNNLS.2016.2574748.
[67] J. Yang, S. Yang, Y. Fu, X. Li, and T. Huang, “Nonnegative graph embedding,” IEEE CVPR, 2008, pp. 1-8
[68] H. Zhang, Z. J. Zha, Y. Yang, S. Yan, and T. S. Chua, “Robust (semi) nonnegative graph embedding,” IEEE Trans. Image Process., vol. 23, no. 1, pp.2996-3012, 2014.
[69] G. Strang, Linear Algebra and Its Applications, 4th ed., Thomson, Brooks/Cole, Belmont, Ca, 2006.
[70] F. Nie, D. Xu, I. W. H. Tsang, and C. Zhang, “Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction,” IEEE Trans. Image Processing, vol. 19, pp. 1921-1932, 2010.
[71] S. Sun, Z. Hussain, and J. Shawe-Taylor, “Manifold-preserving graph reduction for sparse semi-supervised learning,” Neurocomputing, vol. 124, pp. 13-21, 2014.
[72] S. Dumais, “Using SVMs for text categorization,” Microsoft research, IEEE Intelligent Systems, 1998. www.research.microsoft.com, (Date: 21/ 03/06).
[73] J. Überarbeitung, Text mining in the Life Sciences, 26.9.2004.
http://www.coling.unifreiburg.de/research/projects/TextMining/WhitePaperV20.pdf
[74] C. Lin, “Projected gradient methods for non-negative matrix factorization,” Neural Comput., 19:2756-2779, 2007.
[75] S. Liwicki, G. Tzimiropoulos, S Zafeiriou, and M. Pantic, “Euler principal component analysis,” Int. J. Comput. Vis., vol. 1, pp. 498-518, 2013.
[76] Moskowitz and Martin, A course in complex analysis in one variable, World Scientific Publishing Co., pp. 7 (2002).
[77] D. Cai, X. Wang, and X. He, “Probabilistic dyadic data analysis with local and global consistency,” in Proc. the 26th Ann. Int. Conf. Machine Learning (ICML’09), 2009, pages 105-112.
[78] H. Kim, and H. Park, “Sparse non-negative matrix factorization via alternating nonnegativity constrained least squares for microarray data analysis,” Bioinformatics, vol. 23, no. 12, pp. 1495-1502, 2007.
[79] T. Zhang, B. Fang, Y. Tang, G. He and J. Wen, “Topology preserving non-negative matrix factorization for face recognition,” IEEE Trans. Image Processing, vol. 17, no. 4, pp. 574-584, Apr. 2008.
[80] A. Leonardis and H. Bischof, “Robust recognition using eigenimages,” Comput. Vis. Image Understanding, vol. 78, pp. 99-118, 2000.
[81] H. J. Oh, K.M. Lee, and S. U. Lee, “Occlusion invariant face recognition using selective local nonnegative matrix,” Image Vis. Comput, 2008, doi:10.1016/j.imavis.2008.04.016.
[82] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711-720, Jul. 1997.
[83] The ORL database of Face.
Website, http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
[84] Database by Georgia Institute of Technology.
Website: http://www.anefian.com/research/facereco.html.
[85] Y. Li and A. Ngom, “The non-negative matrix factorization toolbox for biological data mining,” in BMC Source Code for Biology and Medicine, 2013.
[86] N.D. Ho, P. V. Dooren, and V. Blondel, “Weighted nonnegative matrix factorization and face feature extraction,” Image and Vision Computing, 2007.
[87] N. Guan, D. Tao, Z. Luo, and J. Shawe-Taylor. (2012). MahNMF: Manhattan non-negative matrix factorization. [Online]. Available: http://arxiv.org/abs/1207.3438.
[88] Z. Yang, Z. Yuan, and J. Laaksonen, “Projective non-negative matrix factorization with applications to facial image processing,” Int. J. Pattern Recognit. Artif. Intell., vol. 21, no. 8, pp. 1353–1362, Dec. 2007.
[89] Z. Yang and E. Oja, “Linear and nonlinear projective nonnegative matrix factorization,” IEEE Trans. Neur. Network, vol. 21, no. 5, pp. 734-749, 2010.
[90] C. Ding, T. Li, and M. I. Jordan, “Convex and semi-nonnegative matrix factorizations,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 1, pp. 45-55, Jan. 2010.
[91] W. Hu, K. Choi, P. Wang, Y. Jiang, and S. Wang, “Convex nonnegative matrix factorization with manifold regularization,” Neural Netw., vol. 63, pp. 94-103, 2015.
[92] J. Barata and M. Hussein, “The Moore–Penrose pseudoinverse: a tutorial review of the theory,” Physics, vol. 42, pp. 146-65, 2012.
[93] B. Fasel and J. Luettin, “Automatic facial expression analysis: a survey,” Pattern Recogn., vol. 36, no. 1, pp. 259-275, 2003.
[94] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews, “The extended Cohn–Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops, pp. 94–101, 2010.
[95] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding facial expressions with Gabor wavelets,” Proc. 3rd IEEE Int. Conf. Automatic Face and Gesture Recognition, pp. 200-205, 1998.
[96] Megvii, Face++ Research Toolkit, 2013, http://www.faceplusplus.com
[97] J. Eggert, E. Korner, “Sparse coding and NMF,” the 4th IEEE Int. Joint Conf Neural Networks, 2004, pp. 2529-2533.
[98] M. N. Schmidt, “Speech Separation Using Non-negative Features and Sparse Nonnegative Matrix Factorization Technical Report,” Informatics and Mathematical Modelling, Technical University of Denmark, DTU (2007)
[99] W. Liu, S. Zheng, S. Jia, L. Shen, X. Fu, “Sparse nonnegative matrix factorization with the elastic net,” IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2010, pp. 265-269.
[100] N. Guan, D. Tao, Z. Luo, B. Yuan, “NeNMF: an optimal gradient method for non-negative matrix factorization,” IEEE Trans. Signal Processing, vol. 60, no.6, pp. 2882-2898, 2012.
[101] V. H. Duong, Y. S. Lee, B. T. Pham, S. Mathulaprangsan, P. T. Bao, and J. C. Wang. “Complex matrix factorization for face recognition,”
Available:https://arxiv.org/ftp/arxiv/papers/1612/1612.02513.pdf
[102] V. H. Duong, Y. S. Lee, J. J. Ding, B. T. Pham, P. T. Bao, and J. C. Wang, “Exemplar-embed complex matrix factorization for facial expression recognition,” IEEE ICASSP, 2017.
[103] D. K. Nguyen, K. Than, and T. B. Ho, “Simplicial nonnegative matrix factorization,” in Proc. Int. Conf. on Research, Innovation and Vision for Future (RIVF), 2013, pp. 47-52.
[104] J. L. Roux, F.Weninger, and J. R. Hershey, “Sparse NMF – half-baked or well done?,” Mitsubishi Electric Research Laboratories Technical Report, 2015.
[105] P. Li, J. Bu, Y. Yang, R. Ji, C. Chen, and D. Cai, “Discriminative orthogonal nonnegative matrix factorization with flexibility for data representation,” Expert Syst. Appl, vol 41, no.4, pp. 1283-1293, 2014
[106] M. Hua, M. K. Lau, J. Pei, and K. Wu, “Continuous K-means monitoring with low reporting cost in sensor networks,” IEEE Trans Knowl. Data Eng., vol. 21, no. 12, pp. 1679-1691, 2009.
[107] S. A. Nene, S. K. Nayar, and H. Murase, “Columbia object image library (COIL-100),” Technical Report CUCS-006-96, Feb. 1996.
[108] W. Xu and Y. Gong, “Document clustering by concept factorization,” in ACM Conf. Research and Development in Information Retrieval, 2004, pp. 202-209.
[109] D. Cai, X. F. He, and J. W. Han, “Locally consistent concept factorization for document clustering,” IEEE Trans Knowl. Data Eng., vol. 23, no. 6, pp. 902-913, 2011.
指導教授 王家慶 范世寶(Jia-Ching Wang Pham The Bao) 審核日期 2017-11-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明