博碩士論文 102622007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:35.153.39.7
姓名 王維稷(Wei-ji Wang)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 應用雷達差分干涉技術測量印度庫曼南部地表變形
(Application of Radar Interferometry for Measuring the Surface Deformation of Southern Kumaun, India)
相關論文
★ 應用雷達干涉法在彰化縣員林地區地層下陷研究★ 應用太空大地測量法探討台南地區之地表變形
★ 應用地形分析方法研究台灣中央山脈東翼地表抬升★ 利用衛星影像萃取近岸地形-以台灣北部為例
★ 台灣西南部前陸地區演育與古應力分析★ 桃園臺地群地表變形與地下構造之研究
★ 應用永久散射體差分干涉法觀測台灣北部地區之地表變形★ 台灣東部縱谷南端之活動構造研究
★ 利用GPS觀測資料探討台北地區之地殼變形★ 台灣地區大型地震前後地震活動率與庫倫應力的關係
★ Seismic hazard assessment in Taiwan: Insights from historical seismicity and radar interferometry analyses★ GPS時間序列的雜訊分析-美國東盆嶺及黃石蛇河平原觀測網
★ 台北盆地及周圍山區之現今地表變形研究★ 利用永久性散射體差分干涉法探討台南地區之地殼形變
★ 臺灣南部橫貫公路向陽-初來段之構造與邊坡穩定★ 莫拉克風災山崩區域之地質構造與大地應力分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究的研究區域庫曼(Kumaun)位於印度西北部北阿坎德邦(Uttatakhnad Pradesh)的喜馬拉雅山脈(Himalaya)南段。本研究目的為探討由南而北分別為恆河平原(Ganga Plain)、希瓦立克(Siwalik)以及小喜馬拉雅(Lesser Himalaya)地區的地表變形。希瓦立克區域是喜馬拉雅山脈的變形前緣並以HFT (Himalayan Frontal Thrust)為南界,MBT (Main Boundary Thrust)為北界。由於本區域內缺乏大地測量等觀測網,因此主要使用InSAR (Interferometry Synthetic Aperture Radar, 雷達差分干涉)方法,再搭配在區域內架設的12個移動型GPS (Global Positioning System, 全球衛星定位系統)觀測站以及全站儀來測量區域內的地表變形。使用的影像與觀測時間段分別為EnviSAT衛星2008年至2010以及ALOS衛星2007年至2010年。除此之外,亦使用不同的方法對EnviSAT影像做大氣延遲校正(TRAIN軟體)。本研究中使用ERA模型以及MERIS衛星資料對影像做校正。由於缺乏前人的觀測以及研究,本文的GPS及InSAR資料為本區域內最早的衛星測地結果,並能夠運用於未來做更進一步的研究。結果顯示,雖然本區域極少發生地震事件,但在區域內的一些構造線兩側卻呈現出不同的變形行為。本文提出簡易模型以說明此區域的斷層構造演化:此區域中央高四週低的地形,應是由於右移斷層Garapani-Kathgodam Fault西側區域移動方向與多數逆衝斷層相反,導致此區域沿著Ramgarh Thrust (RT)南緣抬升,LOS速度約10至30 mm / yr;而RT以北的區域下降,LOS速度約-10 mm / yr。由本研究觀測的測地速度做初步判斷,此區域斷層淺部有耦合的可能,在未來有可能孕震。
摘要(英) The Kumaun area is a part of the Himalayan mountain belt that locates at the Uttarakhand Pradesh, northwest India. In this study I focus on the deformation of "Ganga Plain", "Siwalik" and "Lesser Himalaya" areas, from south to the north. Siwalik is the deformation front of the Himalayan orogene bounded by HFT (Himalayan Frontal Thrust) to the south and MBT (Main Boundary Thrust) to the north. Since there was no geodetic network in this area, our research group installed 12 campaign GPS stations and total station nets in the area. I also used InSAR (Interferometry Synthetic Aperture Radar) technique to observe surface deformation of this area. I used EnviSAT images from 2008 to 2010 as well as ALOS image from 2007 to 2010 to carry out a series of analysis. Additionally, I also tried some methods (TRAIN software) to correct the atmospheric effect. ERA and MERIS data are used to correct the atmospheric delay in this study. As a result of lacking seismic data and others geodetic measurement in the region, my InSAR and GPS measurements are the first dataset to reveal the different deformation patterns along some geological structures, and can be applied to further reaserches. Despite few seismic events have occured in the area, our observations revealed that some of the areas that nearing the faults have been experiencing obvious deformation during the observation period. I hereby propose a model to interpret the tectonic evolution in Kumaun Himalaya. The highest terrain located in the center of area appears to be caused by the opposite movement between Garapani-Kathgodam Fault (right-lateral fault) and the others thrusts, which make the area in the south of Ramgarh Thrust (RT) uplifted with observed LOS velocities of about 10 to 30mm/yr. Area in the north of RT, on the other hand, is subsiding with a LOS velocity about -10mm/yr. Our geodesy results indicate that the shallow part of faults in study area coupled thus implies a potential of earthquake rupturing in the future.
關鍵字(中) ★ 雷達差分干涉
★ 全球衛星定位系統
★ 大氣延遲
★ 地表變形
★ 喜馬拉雅山
★ 印度
關鍵字(英) ★ InSAR
★ GPS
★ Atmospheric delay
★ Surface deformation
★ Himalaya
★ India
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究動機與目的 1
1.2 前人研究概況 2
地質調查 2
雷達差分干涉測量 3
1.3 論文內容簡介 3
第一章附圖 4

第二章 區域地質背景 9
2.1 喜馬拉雅山整體構造及地質 9
地形概況 9
地質與地層 10
1.希瓦立克 (Siwalik)地質 11
2.小喜馬拉雅 (Lesser Himalaya)地質 11
3.大喜馬拉雅 (Greater Himalaya)地質 12
4.特提斯喜馬拉雅 (Thethys Himalaya)地質 12
大型活動斷層 13
1. HFT(Himalaya Frontal Thrust) 13
2. MBT(Main Boundary Thrust) 13
3. MCT(Main Central Thrust) 13
4. STD(South Tibet Detachment) 13
2.2 研究區域構造及地質 14
地形概況 14
地質與地層 14
區域活動斷層 15
1. HFT(Himalaya Frontal Thrust) 15
2. MBT(Main Boundary Thrust) 15
3. G-KF(Garapani-Kathgodam Fault) 16
4. RT(Ramgarh Thrust) 16
5. AT(Almora Thrust) 16
6. PF(Pawalgarh Fault) 16
7. DT(Dhlkala Thrust) 17
第二章附圖 18

第三章 InSAR研究方法與流程 24
3.1雷達差分干涉技術原理介紹 24
3.2雷達差分干涉技術資料處理流程 (StaMPS) 27
第一部分:前處理 (Pre-processing) 27
第二部分:生成干涉圖與DInSAR (Create interferograms and DInSAR) 28
第三部分:相位分析與PSInSAR (Phase analysis and PSInSAR) 29
3.3 GPS資料處理 32
3.4全站儀資料處理 32
第三章附圖 33

第四章 資料處理結果 46
4.1 雷達影像取得與處理 46
影像來源及參數 46
影像處理結果 46
EnviSAT結果 47
ALOS結果 49
4.2 EnviSAT影像的大氣修正 50
4.3 GPS資料處理成果 51
4.4全站儀資料處理成果 52
第四章附圖 53

第五章 綜合討論 85
5.1 PSInSAR影像品質討論 85
EnviSAT與ALOS影像討論 85
MERIS的大氣修正討論 85
5.2 MERIS與ERA聯合大氣修正結果 87
5.3 區域內GPS與全站儀測量結果與PSInSAR的比較 88
GPS測站 88
Total Station全站儀 88
5.4 地表變形與活動斷層討論 89
斷層活動行為與前人研究討論 91
第五章附圖 94
第六章 結論與未來工作 116
參考文獻 117
參考文獻 Ader Thomas et al., (2012). Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. Journal of Geophysical Research, VOL. 117, B04403.
Arora B. R.,Gahalaut V. K., Kumar Naresh, (2012). Structural control on along-strike variation in the seismicity of the northwest Himalaya. Journal of Asian Earth Sciences, 57, P.15-24.
Banerjee P., Burgmann R., (2002). Convergence across the northwest Himalaya from GPS measurements. Geophysical Research Letters, VOL.29, No.13.
Beaumont C., Lee B., Nguyen M. H., Jamieson R. A., (2001). Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, Vol.414, P.738-742.
Bekaert D., Hooper Andrew, Wright T. J., (2015). A spatially-variable power-law tropospheric correction technique for InSAR data. Journal of Geophysical Research, VOL. 120, Issue 2, P.1345-1356.
Bekaert D., Hooper Andrew, Wright T. J., (2015). Reassessing the 2006 Guerrero slow slip event, Mexico:Implications for large earthquakes in the Guerrero Gap. Journal of Geophysical Research, VOL. 120, Issue 2, P.1357-1375.
Bekaert D., Walters R. J., Wright T. J., Hooper A. J., Parker D. J., (2015). Statistical comparison of InSAR tropospheric correction techniques. Remote Sensing of Environment, VOL. 170, P.40-47.
Burchfiel, B.C., Royden, L.H., (1985). North–south extension within the convergent Himalayan region. Geology, Vol.13, P.679-682.
Célérier, J., Harrison T. M., Alexander G. W. A., Yin An, (2009). The Kumaun and Garwhal Lesser Himalaya, India Part 1. Structure and stratigraphy. Geological Society of America Bulletin, 121, No.9-10, P.1262-1280.
Célérier, J., Harrison T. M., Alexander G. W. A., Yin An, (2009). The Kumaun and Garwhal Lesser Himalaya, India Part 2. Thermal and deformation histories, (2009). Geological Society of America Bulletin, No.9-10, P.1281-1297.
Chang C.-P, Chen K.-S., Wang C.-T., Yen J.-Y., Chang T.-Y., Lin C.-W., (2004). Application of space borne radar interferometry on crustal deformations in Taiwan: a perspective from the nature of events. Terr. Atmos. Ocean. Sci. Vol.15 (3), P.523–543.
Chang C.-P, Yhokha A., Goswami P. K., Yen J.-Y., Ching K.-E., (2015). Recent surface deformation in the Himalaya and adjoining piedmont zone of the Ganga Plain, Uttarakhand, India. AGU conference.
Chen C. W., Zebker H. A., (2000). Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms. Journal of the Optical Society of America A, Vol. 17, P. 401-414.
Decells P.G., Gehrels G. E., Quade Jay, Ojha T. P., (1998). Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics, Vol.17, No.5, P.741-765.
Ferretti A., Prati C., Rocca F., (2001). Permanent Scatterers in SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, Vol.39, NO.1.
Goswami, P. K., Pant C. C., (2007). Geomorphology and tectonics of Kota-Pawalgarh duns, central Kumaun sub-Himalaya. CURRENT SCIENCE, VOL.92, No.5, 10.
Goswami, P. K., Pant C. C., (2008). Tectonic evolution of Duns in Kumaun sub-Himalaya, India a remote sensing and GIS-based study. International Journal of Remote Sensing, Vol.29, No.16, 20, P.4721-4734.
Goswami, P. K. , Pant C. C., Pandey S., (2009). Tectonic controls on the geomorphic evolution of alluvial fans in the piedmont zone of Ganga Plain, Uttarakhand, India. Journal of Earth System Science, 118, No.3, P.245-259.
Goswami, P. K., (2012). Geomorphic evidences of active faulting in the northwestern Ganga Plain, India: implications for the impact of basement structure. Geosciences Journal, Vol.16, No.3, P.289-299.
Hodges K. V., Hurtado M., Whipple K. X., (2001). Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics, Vol.20, P.799-809.
Hooper A., (2006). Persistent scatterer radar interferometry for crustal deformation studies and modeling of volcanic deformation. PhD Thesis, Stanford University, CA., U.S.A..
Hooper A., Zebker H. A., (2007). Phase unwrapping in three dimensions with application to InSAR time series. Journal of Optical Society of America, VOL.24, No. 9.
Jolivet R., Agram P. S., Lin N. Y., Simons M., Doin M.-P., Peltzer G., Li Z.-H., (2014). Improving InSAR geodesy using global atmospheric models. Journal of Geophysical Research: Solid Earth, 119, P. 2324-2341.
Larson, K. M., Burgmann R., Bilham R., Freymueller J. T., (1999). Kinematics of the India-Eurasia collision zone from GPS measurements. Journal of Geophysical Research, VOL. 104, P. 1077-1093.
Lee, S.-I., (2014). Atmospheric correction in InSAR measurement: a study case from the western Himalaya, India. Master Thesis, National Central University, Taiwan.
Lee, S.-Y., Seong Y. B., Owen L. A., Murari M. K., Lim H. S., Yoon H. I., Yoo K.-C., (2013). Late Quaternary glaciation in the Nun-Kun massif, northwestern India. Boreas, Vol.43, P.67-89.
Mahesh, P., Rai S. S., Sivaram K., Paul Ajay, Gupta Sandeep, Sarma Rajagopala, Gaur V. K., (2013). One-dimensional reference velocity model and precise locations of earthquake hypocenters in the Kumaon–Garhwal Himalaya. Bulletin of the Seismological Society of America, Vol.103, No.1, P.328-339.
Malik, Javed N., Shah A. A., Sahoo A. K., Puhan B., Banerjee C., Shinde D. P., Juyal N., Singhvi A. K., Rath S. K., (2010). Active fault growth and segment linkage along the Janauri anticline (frontal foreland fold), NW Himalaya, India. Tectonophysics, Vol.483, P.327-343.
Massonnet D., Feigl K. L., (1998). Radar interferometry and its application to changes in the Earth′s surface. Reviews of Geophysics, 36, 4, P.441-500.
Mikhailov Valentin, Kiseleva Elena, Dmitriev Pavel, Golubev Vasily, Smolyaninova Ekaterina, Timoshkina Elena, (2014). On reconstruction of the three displacement vector components from SAR LOS displacements for oil and gas producing fields. Procedia Technology, Vol. 16, P.385-393.
Nakata, T., (1972). Geomorphic history and crustal movements of the foot-hills of the Himalayas. Institute of Geography, Faculty of Science, Tohoku University.
Nakata T., (1989). Actives faults of the Himalaya of India and Nepal. Geological Society of America, Special Paper, 232, P.243-264.
Pant, C.C., Shukla U. K., (1999). Nagthat formation: an example of a progradational, tide-dominated Proterozoic succession in Kumaun Lesser Himalaya, India. Journal of South-East Asian Earth Science, VOL.17, P.353−368.
Patel, R. C., Adlakha V., Singh P., Kumar Y., Lal N., (2011). Geology, structural and exhumation history of the higher Himalayan crystallines in Kumaon Himalaya, India. Journal Geological Society of India, Vol.77, P.47-72.
Paul, J., Burgmann R., Guar V. K., Bilham R., Larson K. M., Ananda M., B., Jade S., Mukal M., Anupama T. S., Satyal G., Kumar D., (2000). The motion and active deformation of India. Geophysical Research Letters, Vol.28, No.4, P. 647-650.
Replumaz, A., Negredo A. M., Guillot S., Beek P., Villasenor A., (2010). Crustal mass budget and recycling during the India Asia collision. Tectonophysics, 492, P.99-107.
Rosen, P. A., Hensley S., Peltzer G., Simons M., (2004). Updated repeat orbit interferometry package released. Eos, Vol.85, P. 47.
Ryder, I Burgmann R., Pollitz F., (2011). Lower crustal relaxation beneath the Tibetan plateau and Qaidam basin following the Kokoxili earthquake. Geophysical Journal International, 187, P.613-630.
Shen Zheng-Kang, Jackson David D., Ge Bob X., (1996). Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. Journal of Geophysical Research, Vol. 101, No. B12, P. 27957-27980.
Simons M., Rosen P. A., (2007). Treatise on Geophysics. Vol.3, Geodesy.
Sorkhabi R. B., Stump E., Foland K. A. Jain A. K., (1999). Fission-track and 40Ar/39Ar evidence for episodic denudation of the Gangotri granites in the Garhwal Himalaya, India. Tectonophysics, Vol.260, P.187–199.
Srikantia S. V., (1987). Himalaya - the collided orogeny : a plate tectonic evolution on geological evidences. Tectonophysics, Vol.134, P.75-90.
Srivastava, P., Mitra G., (1994). Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): Implications for evolution of the Himalayan fold-and-thrust belt. Tectonics, VOL.13, No. 1, P.89-109.
Szeliga, W., Bilham R., Kakar D. M., Lodi S. H., (2012). Interseismic strain accumulation along the western boundary of the Indian subcontinent. Journal of Geophysical Research, VOL. 117, B08404.
Valdiya, K. S., (1976). Himalayan transverse faults and folds and their parallelism with subsurface structures of north Indian plains. Tectonophysics, 32, P.353-386.
Valdiya, K. S., (2001). Reactivation of terrane-defining boundary thrusts in central sector of the Himalaya:Implications. Current Science, Vol.81, No.11, P. 1418-1431.
Verma R. K., (1997). Paleomagnetism from parts of Tethys Himalaya, Indus suture zone, Ladakh and south Tibet: Implications for collision between Indian and Eurasian plate. Himalayan Geology, Vol.18, P.93-102.
Webb A., Schmitt A. K., He D., Weigand E. L., (2011). Structural and geochronological evidence for the leading edge of the Greater Himalayan Crystalline complex in the central Nepal Himalaya. Earth and Planetary Science Letters, Vol.304, P.483-495.
Yhokha, A., Chang C.-P., Goswami P. K., Yen J.-Y., Lee S.-I., (2015). Surface deformation in the Himalaya and adjoining piedmont zone of the Ganga Plain, Uttarakhand, India: Determined by different radar interferometric techniques. Journal of Asian Earth Sciences, 106, P. 119–129.
Yin A., (2006). Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, Vol.76, P.1-131.
指導教授 張中白、張午龍(Chung-pai Chang Wu-lung Chang) 審核日期 2016-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明