博碩士論文 102622010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.17.150.89
姓名 彭筱涓(Hsiao-Chuan Peng)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 利用剪力波分離探討中國大陸東南沿海地區的非均向性及其地體構造上之意涵
(Seismic anisotropy in the southeastern China and its tectonic implications from teleseismic shear wave splitting measurements)
相關論文
★ 利用臨時地震網探討中央山脈東南段地震特性★ 利用互相關方法探討大地電場與地震波的耦合行為
★ 利用複反射衰減方法提高海上震測成像並探討南琉球隱沒系統★ 利用剪力波分離探討福建地區岩石圈的非均向性及其地體構造上之意涵
★ 利用噪聲成像解析嘉義梅山斷層區域之三維淺層剪力波速度構造★ 以衛星熱紅外影像資料探勘及監測北台灣的地熱與火山活動
★ 臺灣花東縱谷北段反射震測調查★ 台灣中央山脈東翼的活動構造
★ 有限頻寬體波之內核PKP敏感度算核★ 利用密集地震網資料配合高頻接收函數法 探討花東縱谷北段淺層構造
★ 利用密集地震網探討花東縱谷北段地下速度構造★ 利用噪訊成像探討澎湖群島淺層地下速度構造
★ 應用高解析反射震測探討花東縱谷地下構造★ 利用深度學習為基礎的P 波自動挑波套件
★ 台灣西南部衰減模式分析★ 利用淺層反射震測探討米崙臺地之地下構造
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 福建沿海地區接近歐亞板塊與菲律賓海板塊的邊界,其鄰近的地體構造包含兩個隱沒系統-馬尼拉隱沒系統及琉球隱沒系統和一個碰撞系統-臺灣造山帶。在研究地體構造時,震波非均向性的研究有助於了解岩石圈變形和地函流場機制。以往透過地震資料研究臺灣本島的非均向性性質時,所得結果可知其非均向性方向大致與臺灣造山帶走向平行,呈現近南北向的非均向性方向,此種排列形式與岩石圈變形有關。然而,就福建沿海地區而言,其地理位置與臺灣僅以臺灣海峽分隔,且為中國大陸東南部主要的強震活動區,但關於福建沿海區域性的非均向性特性和地函流場機制,其相關研究相對於臺灣地區較為少。
為了解中國大陸東南方-福建沿海地區複雜的地體動力機制,探討地震非均向性是相當重要的,相較於過去較大尺度的研究,以往這些研究的目的通常為得到大範圍的非均向性變化,因此只用零星的測站所得資料去描述,本研究期望以密集的區域性測站所能得到的高解析資料為目標,得到小範圍鄰近測站的非均向性變化,並以此彌補全球尺度的非均向性結果的不足。因此,本研究針對福建沿海地區的17個南北向排列的寬頻地震測站(broadband seismic stations)進行地震資料的處理,其資料來源時間段約為2008年8月至2010年6月,對此資料進行:(1)橫向分量最小能量法(Transverse Minimization Method, SC)之分析,及(2)分離強度法(Splitting Intensity Method, SI),藉此兩種方法觀察並探討福建沿海地區較區域性也較精細的地函流流場及其非均向性變化。
兩種方法的觀測結果顯示:(1)由遠震剪力波經SC法之分析,在17個測站資料中得到共27組分離參數(splitting parameters),平均快慢波之間的時間差(delay time, δt)約為2.4秒,最大可達3.8秒,其分離時間差與臺灣地區所得之結果相比明顯較高,表示其非均向性厚度也大於臺灣地區。而各測站所得的快波極化方向(fast polarization, ϕf)卻因不同地震事件相對於測站的震源後方位角(back-azimuth, ϕb)不同而產生變化,因此觀察到多方向性的快波極化方向解,部分測站以平行海岸線的形式存在,這樣的結果也表示中國大陸東南沿海下方存在複雜的地函流場機制。(2)藉由測量剪力波分離強度,在17個測站測得共193組強度參數,分別對每個測站的資料點做曲線擬合後,平均快慢波之間時間差約為1.04秒,快波極化方向於北段(北緯24.5度以北)呈現平行於海岸線方向,南段(北緯24.5度以南)呈現垂直海岸線方向。將本研究所得結果與全球非均向性速度構造交互比對,推測此變化應是由地函流流場與隱沒板塊之間的相互影響所造成的。
摘要(英) The tectonics of southeastern China and its surrounding regions involve two active subduction systems (the Manila and Ryukyu subductions) and one collision system (the Taiwan orogen). In this study, we use teleseismic SKS/SKKS splitting as a tool for investigating seismic anisotropy. The splitting parameters, fast-polarization azimuth (ϕf) and delay time (δt), can provide key information for understanding the geodynamic process in this region. Measurements of δt and ϕf can be used as indicators for the information of the product of deformation magnitude and strain direction. In previous studies, only few seismic stations in this region were available for the analysis. Therefore, in this study we selected 17 seismic stations along the Fujian coastline to obtain more shear wave measurements. Two methods (transverse minimization and splitting intensity method) are applied to obtain the splitting parameters for testing the reliability of the results. Transverse minimization method [Silver and Chan, 1991] utilizes a grid search approach to determine the pair of splitting parameters (ϕf, δt) by miniming the energy on the transverse component. Splitting intensity method, also named Multichannel method [Vinnik et al., 1989; Chavrot, 2000], is defined as the amplitude of the transverse component relative to the time derivative of the radial component. According to the sinusoidal function S=δt sin⁡2(ϕ_b-ϕ_f ), splitting intensity (S) depends on the angle of back-azimuth (ϕb) and ϕf and on the δt between the two shear waves.
From transverse minimization method (SC), the results indicate that the average delay time of teleseismic shear waves observed from 17 stations is 2.4 s and the maximum is 3.8 s, suggesting that seismic anisotropy at least down to 300 km depth. The average split time delay (2.4 s) beneath Fujian coastline is greater than the average result observed from Taiwan and also indicates stronger seismic anisotropy. The disorder distribution of fast directions observed from 17 stations may be caused by different back-azimuths with different teleseismic events, and reveal the fact of complex geodynamic mechanisms beneath southeastern China. From splitting intensity method (SI), each station can observe a pair of splitting parameter (ϕf, δt) by sinusoidal curve fitting. The average split time delay is 1.04 s, which is lower than the result (2.4 s) observed from transverse minimization method. The fast directions can be discussed in two parts. As a result, along the Fujian coastline, compared with the global tomography, it can be explained that the variations of fast-polarizations (ϕf) could relate to the EW mantle flow created by NS collision between the India and Eurasian Plates, influenced by the Taiwan orogen (the collision between Eurasian and Philippine sea plates) and two subduction systems (the Manila and Ryukyu subductions).
關鍵字(中) ★ 非均向性
★ 地體動力構造
★ 福建沿海
★ 剪力波分離
★ 分離強度
關鍵字(英) ★ Fujian coastline
★ teleseismic anisotropy
★ geodynamic process
★ shear-­wave splitting
★ splitting intensity
論文目次 摘要 I
ABSTRACT III
致謝 V
目錄 VII
圖目錄 IX
表目錄 XI
第一章 緒論 1
1.1 研究動機及目的 1
1.2臺灣與福建地體構造 3
1.3 臺灣與福建地區剪力波分離與非均向性之研究 14
1.4 本文內容 21
第二章 研究方法及原理 22
2.1 波形交互對比法(WAVEFORM CROSS-CORRELATION METHOD, RC) 23
2.2 特徵值法(EIGENVALUE METHOD, EV) 24
2.3 橫向分量最小能量法(TRANSVERSE MINIMIZATION METHOD, SC) 25
2.4 分離強度法(SPLITTING INTENSITY / MULTICHANNEL METHOD, SI) 28
2.5 交互摺積法(CROSS-CONVOLUTION METHOD) 29
2.6 方法選擇 30
第三章 資料來源與資料處理 32
3.1 資料來源 32
3.2 資料選取 36
3.3 資料處理 38
3.3.1 橫向分量最小能量法(Transverse Minimization Method, SC) 38
3.3.2 分離強度法(Splitting Intensity / Multichannel Method, SI) 42
第四章 研究結果 44
4.1 橫向分量最小能量法觀測結果 44
4.2 分離強度法觀測結果 66
第五章 討論 86
5.1 與全球P波速度構造剖面比較 88
5.2 與表面波非均向性比較 93
第六章 結論 96
參考文獻 97
附錄 106

參考文獻 Ando, M. (1984). ScS polarization anisotropy around the Pacific Ocean. Journal of Physics of the Earth, 32(3), 179-195.
Angelier, J. (1986), Preface to the special issue on “Geodynamics of the Eurasian-Philippine Sea Plate Boundary”: Tectonophysics, 125, edited, IX-X.
Aster, R. C., Shearer, P. M., & Berger, J. (1990). Quantitative measurements of shear wave polarizations at the Anza seismic network, southern California: Implications for shear wave splitting and earthquake prediction. J. Geophys. Res.: Solid Earth (1978–2012), 95(B8), 12449-12473.
Backus, G. E. (1965). Possible forms of seismic anisotropy of the uppermost mantle under oceans. J. Geophys. Res., 70(14), 3429-3439.
Bowman, J. R., & Ando, M. (1987). Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophys. J. Int., 88(1), 25-41.
Brocher, T. M., & Christensen, N. I. (1990). Seismic anisotropy due to preferred mineral orientation observed in shallow crustal rocks in southern Alaska. Geology, 18(8), 737-740.
Chang, E. T., Liang, W. T., & Tsai, Y. B. (2009). Seismic shear wave splitting in upper crust characterized by Taiwan tectonic convergence. Geophys. J. Int., 177(3), 1256-1264.
Chen, C. H., & Yen, H. J. (1998). A preliminary study on crustal anisotropy in Chia-Nan area of Taiwan. TAO, 9, 573-588.
Chevrot, S. (2000). Multichannel analysis of shear wave splitting. J. Geophys. Res.: Solid Earth (1978–2012), 105(B9), 21579-21590.
Chevrot, S. (2006). Finite-frequency vectorial tomography: a new method for high-resolution imaging of upper mantle anisotropy. Geophys. J. Int., 165(2), 641-657.
Crampin, S. (1978). Seismic-wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic. Geophys. J. Int., 53(3), 467-496.
Crampin, S. (1981). A review of wave motion in anisotropic and cracked elastic-media. Wave motion, 3(4), 343-391.
Crampin, S. (1984). Effective anisotropic elastic constants for wave propagation through cracked solids. Geophys. J. Int., 76(1), 135-145.
Crampin, S. (1987). Geological and industrial implications of extensive-dilatancy anisotropy. Nature, 328, 491-496.
Crampin, S. (1999). Calculable fluid–rock interactions. J. Geol. Soc., 156(3), 501-514.
Crampin, S., & Peacock, S. (2005). A review of shear-wave splitting in the compliant crack-critical anisotropic Earth. Wave Motion, 41(1), 59-77.
Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Inter., 25(4), 297-356.
Evans, R. (1984). Anisotropy: a pervasive feature of fault zones?. Geophys. J. Int., 76(1), 157-163.
Favier, N., & Chevrot, S. (2003). Sensitivity kernels for shear wave splitting in transverse isotropic media. Geophys. J. Int., 153(1), 213-228.
Fontaine, H., & Workman, D. R. (1978). Review of the geology and mineral resources of Kampuchea, Laos and Vietnam. In Third Regional Conference on Geology and Mineral Resources of Southeast Asia, Bangkok, Thailand (pp. 541-603).
Fromaget, J. (1934). Observations et réflexions sur la géologie stratigraphique et structurale de l′Indochine. Bull. Soc. Geol, 5(4), 101-164.
Fukao, Y. (1984). Evidence from core-reflected shear waves for anisotropy in the Earth′s mantle.
Gao, Y., Wu, J., Cai, J. A., Shi, Y. T., Lin, S., Bao, T., & Li, Z. N. (2009). Shear-wave splitting in the southeast of Cathaysia block, South China. J. Seismol., 13(2), 267-275.
Grabau, A. W. (1924). Migration of geosynclines. Bull. Geol. Soc. China, 3(3‐4), 207-350.
Hess, H. H. (1964). Seismic anisotropy of the uppermost mantle under oceans. Nature, 203, 629-631.
Hsü, K. J., Shu, S., Jiliang, L., Haihong, C., Haipo, P., & Sengor, A. M. C. (1988). Mesozoic overthrust tectonics in south China. Geology, 16(5), 418-421.
Hsü, K. J., Sun, S., & Li, J. L. (1987). Huanan Alps, not south China platform. Sci. Sin. B, 31(1), 109-119.
Hsu, S. K. & Sibuet, J. C. (1995). Is Taiwan the result of arc-continent or arc-arc collision?. Earth Planet. Sci. Lett., 136(3), 315-324.
Huang, B. S., Huang, W. G., Liang, W. T., Rau, R. J., & Hirata, N. (2006). Anisotropy beneath an active collision orogen of Taiwan: Results from across islands array observations. Geophys. Res. Lett., 33(24).
Huang, B. S., Huang, W. G., Liang, W. T., Rau, R. J., & Hirata, N. (2006). Anisotropy beneath an active collision orogen of Taiwan: Results from across islands array observations. Geophys. Res. Lett., 33(24).
Huang, C. Y., Wu, W. Y., Chang, C. P., Tsao, S., Yuan, P. B., Lin, C. W., & Xia, K. Y. (1997). Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics, 281(1), 31-51.
Klimetz, M. P. (1983). Speculations on the Mesozoic plate tectonic evolution of eastern China. Tectonics, 2(2), 139-166.
Klimetz, M. P. (1987). The Mesozoic Tectonostratigraphic Terranes and Accretionary Heritage of South‐Eastern Mainland Asia. Terrane Accretion and Orogenic Belts, 221-234.
Kuo, B. Y., Chen, C. C., & Shin, T. C. (1994). Split S waveforms observed in northern Taiwan: implications for crustal anisotropy. Geophys. Res. Lett., 21(14), 1491-1494.
Kuo-Chen, H., Sroda, P., Wu, F., Wang, C. Y., & Kuo, Y. W. (2013). Seismic Anisotropy of the Upper Crust in the Mountain Ranges of Taiwan from the TAIGER Explosion Experiment. Terr. Atmos. Ocean. Sci., 24(6), 963-970.
Kuo‐Chen, H., Wu, F. T., Okaya, D., Huang, B. S., & Liang, W. T. (2009). SKS/SKKS splitting and Taiwan orogeny. Geophys. Res. Lett., 36(12).
Lallemand, S., Font, Y., Bijwaard, H., & Kao, H. (2001). New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications. Tectonophysics, 335(3), 229-253.
Legendre, C. P., Deschamps, F., Zhao, L., Lebedev, S., & Chen, Q. F. (2014). Anisotropic Rayleigh wave phase velocity maps of eastern China. J. Geophys. Res.: Solid Earth, 119(6), 4802-4820.
Levin, V., Menke, W., & Park, J. (1999). Shear wave splitting in the Appalachians and the Urals: a case for multilayered anisotropy. J. Geophys. Res.: Solid Earth (1978–2012), 104(B8), 17975-17993.
Li, C., van der Hilst, R. D., Engdahl, E. R., & Burdick, S. (2008). A new global model for P wave speed variations in Earth′s mantle. G3, 9(5).
Lin, C. H. (2002). Active continental subduction and crustal exhumation: the Taiwan orogeny. Terra Nova, 14(4), 281-287.
Lin, Y. P., Zhao, L., & Hung, S. H. (2014). Full‐wave effects on shear wave splitting. Geophys. Res. Lett, 41(3), 799-804.
Long, M. D., & Silver, P. G. (2009). Mantle flow in subduction systems: The subslab flow field and implications for mantle dynamics. J. Geophys. Res.: Solid Earth (1978–2012), 114(B10).
Menke, W., & Levin, V. (2003). The cross-convolution method for interpreting SKS splitting observations, with application to one and two-layer anisotropic earth models. Geophys. J. Int., 154(2), 379-392.
Park, J., & Levin, V. (2002). Seismic anisotropy: tracing plate dynamics in the mantle. Science, 296(5567), 485-489.
Plomerová, J., Šílený, J., & Babuška, V. (1996). Joint interpretation of upper-mantle anisotropy based on teleseismic P-travel time delays and inversion of shear-wave splitting parameters. Phys. Earth Planet. Inter., 95(3), 293-309.
Rau, R. J., Liang, W. T., Kao, H., & Huang, B. S. (2000). Shear wave anisotropy beneath the Taiwan orogen. Earth Planet. Sci. Lett., 177(3), 177-192.
Ribe, N. M. (1989). Seismic anisotropy and mantle flow. J. Geophys. Res.: Solid Earth (1978–2012), 94(B4), 4213-4223.
Romanowicz, B. (2011). Surface waves. Encyclopedia of Solid Earth Geophysics, Gupta, H. K. (Ed.), Springer, 1406-1419.
Savage, M. K., & Silver, P. G. (1993). Mantle deformation and tectonics: constraints from seismic anisotropy in the western United States. Phys. Earth Planet. Inter., 78(3), 207-227.
Savage, P. E. (1999). Organic chemical reactions in supercritical water. Chem. Rev., 99(2), 603-622.
Shih, X. R., Meyer, R. P., & Schneider, J. F. (1989). An automated, analytical method to determine shear-wave splitting. Tectonophysics, 165(1), 271-278.
Sieminski, A., Paulssen, H., Trampert, J., & Tromp, J. (2008). Finite-frequency SKS splitting: measurement and sensitivity kernels. Bull. Seismol. Soc. Amer., 98(4), 1797-1810.
Silver, P. G. (1996). Seismic anisotropy beneath the continents: probing the depths of geology. Annu. Rev. Earth Planet. Sci., 24, 385-432.
Silver, P. G., & Chan, W. W. (1988). Implications for continental structure and evolution from seismic anisotropy. Nature, 335, 34-39.
Silver, P. G., & Chan, W. W. (1991). Shear wave splitting and subcontinental mantle deformation. J. Geophys. Res.: Solid Earth (1978–2012), 96(B10), 16429-16454.
Stein S. & Wysession M. (2003) An introduction to seismology, earthquakes, and earth structure. Blackwell Publishing Ltd., Oxford
Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4(6).
Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Mem. Geol. Soc. China, 6, 21-33.
Turcotte, D. L., & Schubert, G. (2002). Geodynamics, 456 pp.
Vecsey, L., Plomerová, J., & Babuška, V. (2008). Shear-wave splitting measurements—problems and solutions. Tectonophysics, 462(1), 178-196.
Verma, R. K. (1960). Elasticity of some high-density crystals. J. Geophys. Res., 65, 757-766.
Vinnik, L. P., Kind, R., Kosarev, G. L., & Makeyeva, L. I. (1989). Azimuthal anisotropy in the lithosphere from observations of long-period S-waves. Geophys. J. Int., 99(3), 549-559.
Vinnik, L. P., Kosarev, G. L., & Makeeva, L. I. (1984). Lithosphere anisotropy from the observation of SKS and SKKS waves. Doklady Akademii Nauk SSSR, 278(6), 1335-1339.
Wang, J. H. (1989), The Taiwan telemetered seismographic network, Phys. Earth Planet. Inter., 58(1), 9-18.
Willett, S. D. (1999). Orogeny and orography: The effects of erosion on the structure of mountain belts. J. Geophys. Res.: Solid Earth (1978–2012), 104(B12), 28957-28981.
Wong, W. H. (1927). Crustal movements and igneous activities in Eastern China since Mesozoic time. 1. Bull. Geol. Soc. China, 6(1), 9-37.
Wong, W. H. (1929). The Mesozoic Orogenic Movement in Eastern China. Bull. Geol. Soc. China, 8(1), 33-44.
Wu, F. T., R.-J. Rau, & D. Salzberg (1997), Taiwan orogeny: thin-skinned or lithospheric collision?, Tectonophysics, 274(1), 191-220.
Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K., & Avouac, J. P. (2007). Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. J. Geophys. Res.: Solid Earth (1978–2012), 112(B8).
Wüstefeld, A., Bokelmann, G., Zaroli, C., & Barruol, G. (2008). SplitLab: A shear-wave splitting environment in Matlab. Comput. Geosci., 34(5), 515-528.
毛建仁, 厲子龍, & 葉海敏. (2014). 華南中生代構造-岩漿活動研究: 現狀與前景. 中國科學 地球科學 (中文版), 44(12), 2593-2617.
王光杰, 滕吉文, & 張中杰. (2000). 中國華南大陸及陸緣地帶的大地構造基本格局. 地球物理學進展, 15(3), 25-44.
何春蓀. (1986). 臺灣地質概論-臺灣地質圖說明書(增訂第二版). 經濟部中央地質調查所, 1-164.
李四光. (1939). 中國地質學 (The geology of China). 李四光文集第一卷, 58. 6-9.
李兼海. (1998). 福建省構造運動. 構造層劃分及其主要特徵. 福建地質, 17(3). 115-130.
李恩慈. (2005). 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性. 國立中央大學地球物理研究所碩士論文, 1-78.
李錫堤. (1986). 大地應力分析與弧陸碰撞對於臺灣北部古應力場變遷之影響. 國立臺灣大學地質科學研究所博士論文, 1-358.
李霞. (2013). 福建省大地構造單元劃分及基本特徵. 世界地質, 32(3). 549-557.
林松建, 丁學仁, 陳為偉, & 陳祥熊. (2009). 福建地區震源機制解與現代構造應力場研究. 大地測量與地球動力學, 29(5), 27-32.
金振民. (1994). 橄欖石晶格優選方位和上地幔地震波速各相異性. 地球物理學報, 37(4), 469-477.
苗慶杰, 劉希強, 李永華, 周彥文, 鄭建常, 崔鑫, & 季愛東. (2011). 山東地區上地幔各相異性研究. 地震學報, 33(6), 746-754.
孫長青, 雷建設, & 朱德富. (2014). 利用橫波分裂分析方法研究地殼各相異性綜述. CT 理論與應用研究, 4, 024.
殷鴻福, 吳順寶, 杜遠生, & 彭元橋. (1999). 華南是特提斯多島洋體系的一部分. 地球科學-中國地質大學學報, 24(1), 1-12.
梁文宗. (1990). 利用地震S波的分離作用探討臺灣北部地殼之非均向性. 國立臺灣大學海洋研究所碩士論文, 1-95.
黃汲清. (1945). 中國主要構造地質單元. 地質論評.
黃曉葛 & 白武明. (1999). 地震波各相異性的研究進展. 地球物理學進展, 14(3), 54-65.
楊智龍. (2002). 臺灣地殼剪切波非均向性研究. 國立成功大學地球科學地球科學研究所碩士論文. 1-115.
指導教授 郭陳澔(Hao Kuo-Chen) 審核日期 2015-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明