博碩士論文 102622019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.119.143.4
姓名 孫郁勝(Yu-Sheng Sun)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 應用隨機滑移模型 於臺灣地區之機率式海嘯危害度分析
(Probabilistic tsunami hazard analysis (PTHA) of Taiwan region by stochastic model)
相關論文
★ 利用RTL (Region-Time-Length) 演算法 探討921 集集大地震之前兆現象★ 集集餘震b值與碎形維度分析
★ 應用太空大地測量法探討台南地區之地表變形★ 電容耦合地電阻探測系統應用於地下管線與坑道之研究
★ 以交叉對比分析地震的時空分佈行態★ 利用單位海嘯模擬方法建立台灣近海海嘯警報系統
★ 利用PI方法研究地震前兆活動★ 由西太平洋地區T波觀測來探討其成因與遠震參數之關係
★ 臺灣深部電性構造及其板塊構造意義★ 利用Pattern Informatics研究1999年台灣集集與2008年中國汶川地震之前兆現象
★ 模擬地震前兆行為之數值模型★ 利用表面波頻散分析探討馬尼拉海溝側向速度變化
★ 地電法於地下掩埋物調查之研究★ 利用經驗模態分解法(EMD)探討潮汐效應對地震活動的影響
★ 利用LURR方法探討臺灣1994年後大地震之前兆現象★ 利用遠距沙堆模型探討特徵地震之準週期性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究係探討台灣沿海因地震所引起之海嘯危害,應用隨機滑移模型
來建立機率式海嘯危害度的分析模式。在危害度分析中引進時間維度量化
海嘯波高的發生率;使用隨機滑移模型來描述真實地震在其破裂面上之滑
移分布的不確定性,並由此了解複雜的破裂行為對海嘯所造成的影響。模
式應用上,以琉球海溝南段(臺灣花蓮外海)與其最大規模之地震事件為例,
探討分析海嘯危害與對臺灣的影響。在隨機滑移模型中,滑移分布隨著二
維隨機分布(X)上的重尾特徵改變,而此動作也影響了滑移分布在波數域頻
譜的冪律行為。在海嘯危害分析中,依k-square model 來產生多組的隨機滑
移分布,以此分布計算海床之形變與初始水位面後,進行模擬海嘯的傳遞
情形。由結果可清楚地觀察到不同的滑移分布造成波高時間序列與最大波
高的改變,表示即使在同一種地震條件下仍存在波高與傳遞時相位變化的
可能,並暗示著以往在評估海嘯危害時,忽略了海嘯波高的可能性,且有
機會低估海嘯的最大波高。本研究透過更為真實的模擬方式來評估海嘯的
危害度,得到比以往更多有關海嘯波高的信息,因而提供了更為完整的海
嘯危害度分析。
摘要(英) We conduct probabilistic tsunami hazard analysis (PTHA) of Taiwan
region for earthquake sources (the maximum event) in the south part of the
Ryukyu trench and present the annual rate of tsunami wave heights exceeding z.
Stochastic model describes uncertain and heterogeneous slip distributions on the
fault. The values of slip distribution are following the boundary of heavy tail for
the 2D white noise (X) and that also makes the power law deviate to the k square
model. In PTHA, we synthesize patterns of differently complex and
heterogeneous slip distributions induced the vertical seafloor displacements by
stochastic model. The results clearly show the tsunami prorogation is affected
along with the slip distribution pattern changing. That means the behavior of
real tsunami is not the same even under the same conditions and suggest we
ignore the possibility of wave height as estimating the tsunami hazard before
and have a chance to underestimate. This study supplies a more realistic method
of the tsunami hazard analysis and obtains more information.
關鍵字(中) ★ 隨機滑移模型
★ 危害度分析
★ 海嘯
關鍵字(英) ★ stochastic model
★ tsunami
★ hazard
論文目次 摘 要 ...................................................................................................................... i
Abstract.................................................................................................................. ii
誌 謝 .................................................................................................................... iii
目 錄 .................................................................................................................... iv
圖目錄 .................................................................................................................. vi
表目錄 .................................................................................................................. ix
第一章 緒論 ......................................................................................................... 1
1.1 引言 .......................................................................................................... 1
1.2 臺灣海嘯之研究 ...................................................................................... 1
1.3 研究動機與本文架構 .............................................................................. 2
第二章 機率式海嘯危害度分析 ......................................................................... 7
2.1 引言 .......................................................................................................... 7
2.2 建立分析模式 .......................................................................................... 7
2.3 評估地震的破裂幾何與平均滑移量 ...................................................... 9
2.4 海嘯數值模式 ........................................................................................ 11
2.5 計算地震機率 ........................................................................................ 14
2.6 計算區域機率 ........................................................................................ 15
第三章 隨機滑移模型 ....................................................................................... 20
3.1 引言 ........................................................................................................ 20
3.2 滑移分布的自我相似特性 .................................................................... 20
3.3 滑移分布在數學上的描述 .................................................................... 24
3.4 隨機滑移分布的產生 ............................................................................ 25
第四章 分析模式之應用與結果以琉球海溝南段為例 ................................... 34
v
4.1 引言 ........................................................................................................ 34
4.2 研究區域 ── 琉球海溝南段 .............................................................. 34
4.3 地震參數分析 ........................................................................................ 35
4.4 隨機滑移模型參數設定與結果 ............................................................ 35
4.5 海嘯模擬之數值模型設定 .................................................................... 36
4.6 海嘯超越波高之條件機率 .................................................................... 37
4.7 地震與區域機率之評估 ........................................................................ 38
4.8 海嘯危害曲線 ........................................................................................ 38
第五章 隨機滑移分布模型與模擬結果之探討 ............................................... 55
5.1 影響隨機滑移分布模型的因子 ............................................................ 55
5.1.1 滑移分布與冪律指數之探討 ...................................................... 55
5.1.2 截切二維隨機分布對k 之指數與滑移分布的影響 .................. 55
5.2 海嘯模擬結果之探討 ............................................................................ 57
第六章 結論 ....................................................................................................... 76
參考文獻 ............................................................................................................. 78
附 錄 ................................................................................................................... 90
A 地震靜態滑移模型 ................................................................................. 90
B 二維隨機分布與隨機滑移分布 ............................................................. 91
C 波高條件機率分布 ................................................................................. 93
D 波高時間序列 ......................................................................................... 96
參考文獻 Aki, K. (1972). Scaling law of earthquake source time-function. Geophysical Journal International, 31(1-3), 3-25.
Andrews, D. J. (1974). Evaluation of static stress on a fault plane from a Green′s function. Bulletin of the Seismological Society of America, 64(6), 1629-1633.
Andrews, D. J. (1978). Coupling of energy between tectonic processes and earthquakes. Journal of Geophysical Research: Solid Earth (1978–2012), 83(B5), 2259-2264.
Andrews, D. J. (1980). A Stochastic Fault Model, 1. Static Case, J. Geophys. Res. 85, 3867–3877.
Andrews, D. J. (1981). A Stochastic Fault Model, 2. Time-dependent Case, J. Geophys. Res. 86, 10821–18034.
Ammon, C. J., Ji, C., Thio, H. K., Robinson, D., Ni, S., Hjorleifsdottir, V., Kanamori, H., Lay, T., Das, S., Ichinose, G., Polet, J., and Wald, D. (2005). Rupture process of the 2004 Sumatra-Andaman earthquake.Science, 308(5725), 1133-1139.
Ammon, C. J., Lay, T., Kanamori, H., and Cleveland, M. (2011). A rupture model of the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets and Space, 63(7), 693.
Ando, M., Nakamura, M., and Lin, C. H. (2013). Tsunami folklore and possible tsunami source on the eastern coast of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences.
Bouchon, M. (1997). The state of stress on some faults of the San Andreas system as inferred from near-field strong motion data, J. Geophys. Res., 102, 11,731– 11,744.
Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3).
Béjar-Pizarro, M., Carrizo, D., Socquet, A., Armijo, R., Barrientos, S., Bondoux, F., Bonvalot, S., Campos, J., Comte, D., de Chabalier, J. B., Charade, O., Delorme, A., Gabalda, G., Galetzka, J., Genrich, J., Nercessian, A., Olcay, M., Ortega, F., Ortega, I., Remy, D., Ruegg, J. C., Simons, M., Valderas, C. and Vigny, C. (2010). Asperities and barriers on the seismogenic zone in North Chile: state-of-the-art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data. Geophysical Journal International, 183(1), 390-406.
Beauducel, F. (2014). Okada: Surface deformation due to a finite rectangular source, Matlab.
Chi, W. C., Dreger, D., and Kaverina, A. (2001). Finite-source modeling of the 1999 Taiwan (Chi-Chi) earthquake derived from a dense strong-motion network.Bulletin of the Seismological Society of America, 91(5), 1144-1157.
Dalrymple, R. A., and Dean, R. G. (1991). Water wave mechanics for engineers and scientists. Prentice-Hall.
Delouis, B., Nocquet, J. M., and Vallée, M. (2010). Slip distribution of the February 27, 2010 Mw= 8.8 Maule earthquake, central Chile, from static and high‐rate GPS, InSAR, and broadband teleseismic data. Geophysical Research Letters, 37(17).
Frankel, A. (1991). High-frequency Spectral Falloff of Earthquakes, Fractal Dimension of Complex Rupture, b value, and the Scaling of Strength on Faults, J. Geophys. Res. 96, 6291–6302.
Gutenberg, B., and Richter, C. F. (1944). Frequency of earthquakes in California. Bull. Seismol. Soc. Am., 34 (1944), pp. 185–188
Geist, E. L. (2002). Complex earthquake rupture and local tsunamis. Journal of Geophysical Research: Solid Earth (1978–2012), 107(B5), ESE-2.
Geist, E. L., and Parsons, T. (2009). Assessment of source probabilities for potential tsunamis affecting the US Atlantic coast. Marine Geology, 264(1), 98-108.
Geist, E. L. (2013). Near-field tsunami edge waves and complex earthquake rupture. Pure and Applied Geophysics, 170(9-10), 1475-1491
Hurst, H. E., Black, R. P., and Simaika, Y. M. (1965). Long-term storage: an experimental study. Constable.
Hanks, T. C. (1979). b Values and ω-γ Seismic Source Models: Implications for Tectonic Stress Variations along Active Crustal Fault Zones and the Estimation for High-frequency Strong Ground Motion, J. Geophys. Res. 84, 2235–2242.
Hanks, T. C. and Kanamori, H. (1979). A moment magnitude scale, J. Geophys. Res. 84, 2348- 2350.
Herrero, A., and Bernard, P. (1994). A Kinematic Self-similar Rupture Process for Earthquakes, Bull. Seismol. Soc. Am. 84, 1216–1228.
Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C., and Chen, H. Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms.Tectonophysics, 479(1), 4-18.
Hayes, G. (NEIC, Maule 2010). Updated Result of the Feb 27, 2010 Mw 8.8 Maule, Chile Earthquake, http://earthquake.usgs.gov/earthquakes/ eqinthenews/2010/us2010tfan/finite_fault.php, last accessed August 19, 2013.
Hsu, Y. J., Ando, M., Yu, S. B., and Simons, M. (2012). The potential for a great earthquake along the southernmost Ryukyu subduction zone. Geophysical Research Letters, 39(14).
Hayes, G. (NEIC, Sumatra 2012). Preliminary Result of the Apr 11, 2012 Mw 8.6 Earthquake Off the West Coast of Northern Sumatra, http://earthquake.usgs.gov/earthquakes/eqinthenews/2012/usc000905e/finite_fault.php,last accessed August 19, 2013.
Imamura, F. (1996). Review of tsunami simulation with finite difference model. Long-Wave Runup Models, World Science, River Edge, N. J., 25-42.
Imamura, F., Shuto, N., and Goto, C. (1988). Numerical simulations of the transoceanic propagation of tsunamis. Proc., 6th Congress APD-IAHR, 265-272.
Ide, S., Baltay, A., and Beroza, G. C. (2011). Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoku-Oki earthquake. Science,332(6036), 1426-1429.
Ji, C. (2005). Preliminary Rupture Model for the December 26, 2004 earthquake, off the west coast of northern Sumatra, magnitude 9.1, http://neic.usgs.gov/neis/eq_depot/2004/eq_041226/neic_slav_ff.html.
Ji, C. (UCSB, Tocopilla 2007). Preliminary Result of the Nov 14, 2007 Mw 7.81 ANTOFAGASTA, CHILE Earthquake, http://www.geol.ucsb.edu/faculty/ ji/big_earthquakes/2007/11/anto/anto.html, last accessed August 11, 2013.
Kolmogorov, A. N. (1950). Foundations of the Theory of Probability.
Kanamori, H., and Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America,65(5), 1073-1095.
Kanamori, H. (1977). The energy release in great earthquakes. Journal of geophysical research, 82(20), 2981-2987.
Koketsu, K., Hikima, K., Miyazaki, S. I., and Ide, S. (2004). Joint inversion of strong motion and geodetic data for the source process of the 2003 Tokachi-oki, Hokkaido, earthquake. Earth, planets and space, 56(3), 329-334.
Lay, T., and Wallace, T. C. (1995). Modern global seismology (Vol. 58). Academic press.
Lavallée, D., and Archuleta, R. J. (2003). Stochastic modeling of slip spatial complexities for the 1979 Imperial Valley, California, earthquake. Geophysical research letters, 30(5).
Lavallée, D., and Archuleta, R. J. (2005). Coupling of the random properties of the source and the ground motion for the 1999 Chi Chi earthquake.Geophysical research letters, 32(8).
Lavallée, D., Liu, P., and Archuleta, R. J. (2006). Stochastic model of heterogeneity in earthquake slip spatial distributions. Geophysical Journal International, 165(2), 622-640.
Lay, T., Ammon, C. J., Kanamori, H., Xue, L., and Kim, M. J. (2011). Possible large near-trench slip during the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake. Earth, Planets, and Space, 63, 687-692.
Luttrell, K. M., Tong, X., Sandwell, D. T., Brooks, B. A., and Bevis, M. G. (2011). Estimates of stress drop and crustal tectonic stress from the 27 February 2010 Maule, Chile, earthquake: Implications for fault strength. Journal of Geophysical Research: Solid Earth (1978–2012), 116(B11).
Liang, Y., and Chen, W. (2013). A survey on computing Lévy stable distributions and a new MATLAB toolbox. signal processing, 93(1), 242-251.
Mandelbrot, B. B., and Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM review, 10(4), 422-437.
Mansinha, L., and Smylie, D. E. (1971). The displacement fields of inclined faults. Bulletin of the Seismological Society of America, 61(5), 1433-1440.
Mandelbrot, B. B. (1977). Fractals: form, chance, and dimension (p. 365). San Francisco: WH Freeman.
Mandelbrot, B. B. (1982). The Fractal Geometry of Nature, Freeman, New York.
Ma, K. F., Satake, K., and Kanamori, H. (1991). The origin of the tsunami excited by the 1989 Loma Prieta Earthquake—Faulting or slumping?. Geophysical Research Letters, 18(4), 637-640.
Ma, K. F., and Lee, M. F. (1997). Simulation of Historical Tsunamis in the Taiwan Region. Terrestrial, Atmospheric and Oceanic Sciences, 8(1), 13-30.
Ma, K. F., Song, T. R. A., Lee, S. J., and Wu, H. I. (2000). Spatial slip distribution of the September 20, 1999, Chi‐Chi, Taiwan, Earthquake (MW7. 6)—Inverted from teleseismic data. Geophysical Research Letters, 27(20), 3417-3420.
Motagh, M., Schurr, B., Anderssohn, J., Cailleau, B., Walter, T. R., Wang, R., and Villotte, J. P. (2010). Subduction earthquake deformation associated with 14 November 2007, Mw 7.8 Tocopilla earthquake in Chile: Results from InSAR and aftershocks. Tectonophysics, 490(1), 60-68.
Nakamura, M. (2009). Fault model of the 1771 Yaeyama earthquake along the Ryukyu Trench estimated from the devastating tsunami. Geophysical Research Letters, 36(19).
Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America, 75(4), 1135-1154.
Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 82, 1018–1040
Peitgen, H. O., and Saupe, D. (1988). The science of fractal images (p. 312). New York etc. Springer.
Peitgen, H. O., Jürgens, H., and Saupe, D., (1992). Fractals for the Classroom, Part One—Introduction to Fractals and Chaos. New York: Springer.
Papazachos, B. C., Scordilis, E. M., Panagiotopoulos, D. G., Papazachos, C. B., and Karakaisis, G. F. (2004). Global relations between seismic fault parameters and moment magnitude of earthquakes. Bulletin of the Geological Society of Greece, 36.
Pacific Gas and Electric Company. (2010). Methodology for Probabilistic Tsunami Hazard Analysis: Trial Application for the Diablo Canyon Power Plant Site. Submitted to the PEER Workshop on Tsunami Hazard Analyses for Engineering Design Parameters., Berkeley CA.
Rikitake, T., and Aida, I. (1988). Tsunami hazard probability in Japan. Bulletin of the Seismological Society of America, 78(3), 1268-1278.
Ripperger, J., and Mai, P. M. (2004). Fast computation of static stress changes on 2D faults from final slip distributions. Geophysical research letters, 31(18).
Rhie, J., Dreger, D., Bürgmann, R., and Romanowicz, B. (2007). Slip of the 2004 Sumatra–Andaman earthquake from joint inversion of long-period global seismic waveforms and GPS static offsets. Bulletin of the Seismological Society of America, 97(1A), S115-S127.
Seno, T., Stein, S., and Gripp, A. E. (1993). A model for the motion of the Philippine Sea plate consistent with NUVEL‐1 and geological data. Journal of Geophysical Research: Solid Earth (1978–2012), 98(B10), 17941-17948.
Sella, G. F., Dixon, T. H., and Mao, A. (2002). REVEL: A model for recent plate velocities from space geodesy. Journal of Geophysical Research: Solid Earth (1978–2012), 107(B4), ETG-11.
Sladen, A. (Caltech, Maule 2010). Preliminary Result, 02/27/2010 (Mw 8.8), Chile. Source Models of Large Earthquakes. http://www.tectonics. caltech.edu/slip_history/2010_chile/index.html.
Shao, G., Li, X., Ji, C., and Maeda, T. (2011). Focal mechanism and slip history of the 2011 Mw 9.1 off the Pacific coast of Tohoku Earthquake, constrained with teleseismic body and surface waves. Earth, planets and space, 63(7), 559-564.
Sladen, A. (Caltech, Tocopilla 2007). Preliminary Result 11/14/2007 (Mw 7.7) , Tocopilla Earthquake, Chile. Source Models of Large Earthquakes. http://www.tectonics.caltech.edu/slip_history/2007_tocopilla/tocopilla.html, last accessed July 1, 2013.
Shao, G., Li, X., and Ji, C. (UCSB, sumatra 2012). Preliminary Result of the Apr 11, 2012 Mw 8.64 sumatra Earthquake, http://www.geol.ucsb.edu/ faculty/ji/big_earthquakes/2012/04/10/sumatra.html,last accessed August 19, 2013.
Shao, G., Li, X., Liu, Q., Zhao, X., Yano, T., and Ji, C. (UCSB, Maule 2010). Preliminary slip model of the Feb 27, 2010 Mw 8.9 Maule, Chile Earthquake, http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/2010/02/ 27/chile_2_27.html, last accessed September 24,2013.
Tsai, C. C. (1997). Slip, stress drop and ground motion of earthquakes: A view from the perspective of fractional Brownian motion. pure and applied geophysics, 149(4), 689-706.
Titov, V. V., and Synolakis, C. E. (1998). Numerical modeling of tidal wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124(4), 157-171.
Tanioka, Y., Hirata, K., Hino, R., and Kanazawa, T. (2004). Slip distribution of the 2003 Tokachi-oki earthquake estimated from tsunami waveform inversion.Earth, planets and space, 56(3), 373-376.
Theunissen, T., Font, Y., Lallemand, S., and Liang, W. T. (2010). The largest instrumentally recorded earthquake in Taiwan: revised location and magnitude, and tectonic significance of the 1920 event. Geophysical Journal International,183(3), 1119-1133.
Wu, C., Takeo, M., and Ide, S. (2001). Source process of the Chi-Chi earthquake: A joint inversion of strong motion data and global positioning system data with a multifault model. Bulletin of the Seismological Society of America, 91(5), 1128-1143.
Wang, X., and Liu, P. L. F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research,44(2), 147-154.
Wu, T. R., Chen, P. F., Tsai, W. T., and Chen, G. Y. (2008). Numerical study on tsunamis excited by 2006 Pingtung earthquake doublet. Terrestrial, Atmospheric and Oceanic Sciences.
Wang, X. (2008). Numerical modelling of surface and internal waves over shallow and intermediate water. Cornell University.
Wu, T. R., and Huang, H. C. (2009). Modeling tsunami hazards from Manila trench to Taiwan. Journal of Asian Earth Sciences, 36(1), 21-28.
Wang, X. (2009). User manual for COMCOT version 1.7 (first draft). Cornel University, 65.
Wei, S., Graves, R., Helmberger, D., Avouac, J. P., and Jiang, J. (2012). Sources of shaking and flooding during the Tohoku-Oki earthquake: A mixture of rupture styles. Earth and Planetary Science Letters, 333, 91-100.
Wei, S. (Caltech, Sumatra 2012). April/11/2012 (Mw 8.6), Sumatra. Source Models of Large Earthquakes. http://www.tectonics.caltech.edu/ slip_history/2012_Sumatra/index.html, last accessed July 1, 2013.
Yu, S. B., Chen, H. Y., and Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1), 41-59.
Yamanaka, Y., and Kikuchi, M. (2003). Source process of the recurrent Tokachi-oki earthquake on September 26, 2003, inferred from teleseismic body waves.Earth, Planets and Space, 55(12), e21-e24.
Yagi, Y. (2004). Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data. Earth, planets and space, 56(3), 311-316.
Yamazaki, Y., Lay, T., Cheung, K. F., Yue, H., and Kanamori, H. (2011). Modeling near‐field tsunami observations to improve finite‐fault slip models for the 11 March 2011 Tohoku earthquake. Geophysical Research Letters, 38(7).
Yagi, Y., and Fukahata, Y. (2011). Rupture process of the 2011 Tohoku‐oki earthquake and absolute elastic strain release. Geophysical Research Letters,38(19).
Yue, H., Lay, T., and Koper, K. D. (2012). En echelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes. Nature, 490(7419), 245-249.
Zeng, Y., and Anderson, J. G. (1996). A composite source model of the 1994 Northridge earthquake using genetic algorithms. Bulletin of the Seismological Society of America, 86(1B), S71-S83.
Zeng, Y., and Chen, C. H. (2001). Fault rupture process of the 20 September 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America, 91(5), 1088-1098.
Zhang, W., Iwata, T., Irikura, K., Pitarka, A., and Sekiguchi, H. (2004). Dynamic rupture process of the 1999 Chi‐Chi, Taiwan, earthquake. Geophysical research letters, 31(10).
Zeng, Y., Hayes, G., and Ji, C. (2007; USGS, Online Model). Preliminary Result of the Nov 14, 2007 Mw 7.7 Antofagasto, Chile Earthquake, http://earthquake.usgs.gov/earthquakes/eqinthenews/2007/us2007jsat/finite_fault.php, last accessed August 20, 2013.
鄭錦桐, (2002). 台灣地區地震危害度的不確定性分析與參數拆解 國立中央大學地球物理研究所博士論文, 1-227
陳韻如, (2008). 2006 年屏東外海地震引發海嘯的數值模擬探討. 中央大學水文與海洋科學研究所學位論文, 1-68.
黃惠絹, (2008). 馬尼拉海溝地震引發海嘯的潛勢分析. 中央大學水文與海洋科學研究所學位論文, 1-108.
陳伯飛, (2009). 利用單位海嘯模擬來建立台灣海域近海海嘯預警系統, 中央氣象局地震技術報告彙編, 第54卷
指導教授 陳建志、陳伯飛 審核日期 2015-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明