博碩士論文 102623006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.218.129.100
姓名 廖敦佑(Tun-Yu Liao)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 福爾摩沙衛星二號遙測照相儀之在軌相互輻射校正
(In-orbit Radiometric Cross-calibration of FORMOSAT-2 RSI)
相關論文
★ 電離層赤道異常區電場季節性變化之研究: 理論模擬與中華衛星一號觀測之比較★ 場向電漿飄移速度的理論模擬研究與觀測資料之比較
★ 偵測大氣內水平行進之緲子用的帶電粒子偵測器陣列之可行性研究★ 電離層地震前兆與震源機制
★ MTSAT-1R衛星資料在東亞沙塵暴監測及氣膠光學厚度反演之探討★ 結合衛星與地面觀測氣膠輻射參數在東南亞地區氣膠種類辨識之應用
★ MODIS衛星資料在亞洲地區氣膠種類辨識之應用★ 應用衛星資料探討大台北地區都市熱島效應之時空分布
★ AERONET觀測資料在氣膠種類輻射參數之探討★ 季風輻合效應在台灣地區熱帶氣旋降雨影響之探討
★ 衛星資料探討台南都市發展在熱島效應及區域降雨型態之影響★ 研究TIEGCM的環境控制參數於電離層電子濃度分布之敏感度分析
★ 福衛二號絕對輻射校正及全球動態量程之建立★ 對數常態分布應用於台灣地區氣膠單峰消光廓線擬合之分析與改進
★ 煤煙在衛星氣膠參數反演影響之分析與改進★ 高時空融合影像在氣膠光學厚度反演之自動化流程與長期驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的在於建構利用大地衛星八號(Landsat-8, L-8)搭載之影像儀(Operational Land Imager, OLI)所攝得之影像來對福爾摩沙衛星二號(簡稱福衛二號)上之遙測照相儀(Remote Sensing Instrument, RSI)進行相互輻射校正之方法,以取得正確之輻射轉換係數。福衛二號為我國第一顆光學遙測衛星,於西元2004年5月21日升空。其中搭載之遙測酬載為RSI。福衛二號升空及運作至今已超過十年,超出了其原訂僅為五年之任務壽命。因此,為維持RSI所觀測到之大氣層頂輻射率準確度,須對RSI進行絕對輻射校正。於校正場址之挑選,本研究採用國際上常用之非洲撒哈拉荒漠(Sahara Desert)、美洲索諾蘭荒漠(Sonoran Desert)與美國內華達與加州地區荒漠等場址。並參考頻段相近之OLI影像,將OLI影像提供之大氣層頂輻射率輸入輻射傳送模式中(6SV4.1),進行大氣校正,以取得地表反射率,並將地表反射率輸入輻射傳送模式中,搭配當時福衛二號之觀測幾何、頻寬等條件,模擬RSI所觀測之大氣層頂輻射率。最後,將RSI影像之灰階值與模擬所得之RSI觀測輻射率進行統計迴歸,即可得出輻射轉換係數。研究結果顯示,於大部分之光學頻道,本文之校正結果與最新一期太空中心之校正結果和福衛二號發射前於實驗室內所測得之輻射轉換係數差異接近,可達±5%以內,代表本研究所建構之絕對輻射校正法具極高之可行性。
摘要(英) FORMOSAT-2 satellite (FS-2) was launched in May, 2004. It is the first Earth observation satellite operated by the National Space Organization (NSPO) of Taiwan. The main payload housed in FS-2 is Remote Sensing Instrument (RSI) with high spatial resolution. Landsat-8 (L-8) is an American Earth observing satellite launched in February 2013 quite recently. The main sensor on L-8 is Operational Land Imager (OLI). For any optical sensors, ensuring the accurate radiance observing is the most important issue for the applications to the scientific researches and environmental monitoring. Since RSI is operated more than 10 years, the optical characters may be altered. Therefore, the goal in this research is to construct a cross-calibration process and validate it by calibrating radiometric coefficients of FS-2 RSI sensor by using L-8 OLI image as a reference. For FS-2 RSI sensor, OLI is not only a new and well calibrated sensor but also use the similar spectral bands and bandwidth which can provide a credible data for calibrating RSI. The desert areas are selected for the cross-calibration in this study, including Sahara Desert in Africa, Sonoran Desert and deserts in Nevada and California in America. Those sites are usually used in other papers as a satellite sensor calibration site. The radiative transfer code, Second Simulation of the Satellite Signal in the Solar Spectrum version 4.1 (6SV4.1) is employed to drive land surface reflectance and the radiance RSI observed on the top of atmosphere. Eventually, the physical gains of RSI can be figured based on the relationship between observed radiance and the digital number. The results indicate that the differences of the radiometric conversion coefficients are quite similar to the dim file provided by NSPO. The differences can reach in ±5% in most spectral bands.
關鍵字(中) ★ 福爾摩沙衛星二號
★ 大地衛星八號
★ 在軌絕對輻射校正
★ 相互校正
★ 輻射轉換係數
關鍵字(英) ★ FORMOSAT-2 RSI
★ Landsat-8 OLI
★ In-flight absolutely radiometric calibration
★ Cross-calibration
★ Radiometric conversion coefficient
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第1章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 特定目標法 2
1-2-2 相互校正法 4
1-3 研究目的 5
第2章 衛星、感測器及其影像產品、校正場址、地表實測反射率與氣膠光學厚度產品 6
2-1衛星、感測器及影像產品 6
2-1-1福爾摩沙衛星二號、遙測照像儀及其影像產品 6
2-1-2大地衛星八號(LANDSAT-8)與OLI及其影像產品 7
2-2校正場址 8
2-2-1 撒哈拉荒漠 8
2-2-2 索諾蘭荒漠 9
2-2-3 Ivanpah Playa 9
2-2-4 Railroad Valley Playa 9
2-2-5 Alkali Lake 9
2-3地表實測反射率 9
2-4氣膠光學厚度資料 10
2-4-1 MODIS-MOD04_L2 10
2-4-2 CALIPSO- CAL_LID_L2_05kmALay-Prov-V3-30 11
2-4-3 透過已知地表反射率之推算 11
第3章 理論基礎與研究方法 12
3-1輻射傳送理論 12
3-1-1環境效應之理論 13
3-1-2遙測空間解析度之比較與分析 13
3-1-3遙測頻譜之比較與分析 14
3-2福衛二號遙測照相儀之輻射轉換方程式 15
3-3幾何對位與影像匹配及處理 16
3-4相互校正法 16
3-5頻譜與非均向反射特性之探討與地表反射率修正 17
3-5-1頻譜差異 18
3-5-2非均向反射差異 18
3-5-3基於頻譜與非均向反射差異修正地表反射率 19
第4章 結果與討論 20
4-1誤差來源探討 20
4-1-1環境效應對空間解析度之影響 20
4-1-2頻譜差異之影響 21
4-2相互校正結果 22
4-2-1產品等級差異造成之影響 22
4-2-2不考慮頻譜差異與地表非均向反射特性 22
4-2-3考慮頻譜差異及地表非均向反射特性 23
第5章 結論與未來展望 24
5-1結論 24
5-2未來展望 25
參考文獻 26
附圖 33
附表 52
參考文獻 1. 吳岸明, & 張桂祥. (2014). 福衛二號影像處理系統研發之回顧與展望. 航測及遙測學刊, 18(1), 1-12.
2. 林唐煌、劉振榮、李國光、林孟岳、張國恩、連偉宏和廖敦佑(民103),福爾摩沙五號衛星光學遙測酬載之在軌輻射校正先期規劃與研究,財團法人國家實驗研究院國家太空中心委託研究計畫(編號:NSPO-S-103077),未出版。
3. 林唐煌、劉振榮、廖敦佑和曾聖凱(民104),福爾摩沙五號光學遙測酬載之特定目標校正(Vicarious Calibration)與相互校正(Cross Calibration)方法之規劃與研究,財團法人國家實驗研究院國家太空中心委託研究計畫(編號:NSPO-S-104096),未出版。
4. 曾忠一(1988),大氣衛星遙測學,渤海堂文化事業公司,臺灣臺北。
5. 福爾摩沙衛星二號(無日期),民104年12月7日,取自財團法人國家實驗研究院國家太空中心網頁:http://www.nspo.narl.org.tw/2011/tw/projects/FORMOSAT-2/program-description.html
6. Angal, A., Chander, G., Xiong, X., Choi, T., & Wu, A. (2011). Characterization of the Sonoran desert as a radiometric calibration target for Earth observing sensors. Journal of Applied Remote Sensing, 5(1), 059502-059502.
7. Arai, K. (2007). Vicarious calibration of the solar reflection channels of radiometers onboard satellites through the field campaigns with measurements of refractive index and size distribution of aerosols. Advances in Space Research, 39(1), 13-19.
8. Arai, K. (2013). Vicarious Calibration Based Cross Calibration of Solar Reflective Channels of Radiometers Onboard Remote Sensing Satellite and Evaluation of Cross Calibration Accuracy through Band-to-Band Data Comparisons.
9. Barnes, R. A., Eplee, R. E., Patt, F. S., & McClain, C. R. (1999). Changes in the radiometric sensitivity of SeaWiFS determined from lunar and solar-based measurements. Applied Optics, 38(21), 4649-4664.
10. Biggar, S. F., Slater, P. N., & Gellman, D. I. (1994). Uncertainties in the in-flight calibration of sensors with reference to measured ground sites in the 0.4-1.1 μm range. Remote Sensing of Environment, 48(2), 245-252.
11. Chander, G., Helder, D. L., Markham, B. L., Dewald, J. D., Kaita, E., Thome, K. J., ... & Ruggles, T. (2004). Landsat-5 TM reflective-band absolute radiometric calibration. Geoscience and Remote Sensing, IEEE Transactions on, 42(12), 2747-2760.
12. Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), 893-903.
13. Chern, J. S., & Lin, S. F. (2009). In-orbit performance verification of FORMOSAT-2---A look back. Journal of Aeronautics, Astronautics and Aviation. Series A, 41(3), 203-209.
14. CNES. (2011). Absolute Calibration of Formosat-2 Using Desert Site December 2011 Update.
15. CNES. (2014). Absolute Calibration of Formosat-2 Using Desert Site June 2014 Update.
16. Czapla-Myers, J., McCorkel, J., Anderson, N., Thome, K., Biggar, S., Helder, D., ... & Mishra, N. (2015). The ground-based absolute radiometric calibration of Landsat 8 OLI. Remote Sensing, 7(1), 600-626.
17. Dinguirard, M., & Slater, P. N. (1999). Calibration of space-multispectral imaging sensors: A review. Remote Sensing of Environment, 68(3), 194-205.
18. Flood, N. (2014). Continuity of reflectance data between Landsat-7 ETM+ and Landsat-8 OLI, for both Top-of-Atmosphere and surface reflectance: A study in the Australian landscape. Remote Sensing, 6(9), 7952-7970.
19. Hagolle, O., Goloub, P., Deschamps, P. Y., Cosnefroy, H., Briottet, X., Bailleul, T., ... & Herman, M. (1999). Results of POLDER in-flight calibration. Geoscience and Remote Sensing, IEEE Transactions on, 37(3), 1550-1566.
20. Kamei, A., Nakamura, K., Yamamoto, H., Nakamura, R., Tsuchida, S., Yamamoto, N., ... & Wu, A. M. (2012). Cross Calibration of Formosat-2 Remote Sensing Instrument (RSI) Using Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Geoscience and Remote Sensing, IEEE Transactions on, 50(11), 4821-4831.
21. Kaufman, Y. J., & Sendra, C. (1988). Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing, 9(8), 1357-1381.
22. Kotchenova, S. Y., & Vermote, E. F. (2007). Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. Applied optics, 46(20), 4455-4464.
23. Kotchenova, S. Y., Vermote, E. F., Matarrese, R., & Klemm Jr, F. J. (2006). Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Applied optics, 45(26), 6762-6774.
24. Levy, R. C., Remer, L. A., Tanré́, D., Mattoo, S., & Kaufman, Y. J. (2009). Algorithm for remote sensing of tropospheric aerosol over dark targets from MODIS: Collections 005 and 051: Revision 2; Feb 2009. Download from http://modisatmos. gsfc. nasa. gov/_docs/ATBD_MOD04_C005_rev2. pdf.
25. Lin, T. H., Chen, A. J., Liu, G. R., & Kuo, T. H. (2002). Monitoring the atmospheric aerosol optical depth with SPOT data in complex terrain. International Journal of Remote Sensing, 23(4), 647-659.
26. Lin, T.H., & G.R. Liu, (2009 December). In-Orbit Radiometric Calibration of the FORMOSAT-2 RSI, Terrestrial Atmospheric and Oceanic Science, 20(6), 833-838.
27. Liu, C. C., Kamei, A., Hsu, K. H., Tsuchida, S., Huang, H. M., Kato, S., ... & Wu, A. M. (2010). Vicarious calibration of the Formosat-2 remote sensing instrument. Geoscience and Remote Sensing, IEEE Transactions on, 48(4), 2162-2169.
28. Liu, G. R., Lin, T. H., & Kuo, T. H. (2002). Estimation of aerosol optical depth by applying the optimal distance number to NOAA AVHRR data. Remote Sensing of Environment, 81(2), 247-252.
29. Markham, B., Barsi, J., Kvaran, G., Ong, L., Kaita, E., Biggar, S., ... & Helder, D. (2014). Landsat-8 operational land imager radiometric calibration and stability. Remote Sensing, 6(12), 12275-12308.
30. Mendenhall, J. A., & Lencioni, D. E. (2002). Earth Observing-1 Advanced Land Imager Flight Performance Assessment: Absolute Radiometry and Stability During the First Year (No. PR-EO-1-10). MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB.
31. NASA. (n.d.). About MODIS. Retrieved January 19, 2016, from http://modis.gsfc.nasa.gov/about/
32. NASA. (n.d.). Energy: The Driver of Climate. Retrieved January 19, 2016, from http://www.ces.fau.edu/nasa/module-2/how-greenhouse-effect-works.php
33. National Space Organization. (n.d.). Image Data Levels. Retrieved December 7, 2015, from http://www.nspo.org.tw/2008e/imagesell/quality.htm#top
34. Naughton, D., Brunn, A., Czapla-Myers, J., Douglass, S., Thiele, M., Weichelt, H., & Oxfort, M. (2011). Absolute radiometric calibration of the RapidEye multispectral imager using the reflectance-based vicarious calibration method. Journal of Applied Remote Sensing, 5(1), 053544-053544.
35. NCAVEO. (n.d.). Control file. Retrieved December 7, 2015, from http://www.ncaveo.ac.uk/special_topics/atmospheric_correction/example1/6s_controlfile.php
36. Nieke, J., Aoki, T., Tanikawa, T., Motoyoshi, H., & Hori, M. (2004). A satellite cross-calibration experiment. Geoscience and Remote Sensing Letters, IEEE,1(3), 215-219.
37. Ouaidrari, H., & Vermote, E. F. (1999). Operational atmospheric correction of Landsat TM data. Remote Sensing of Environment, 70(1), 4-15.
38. Sakuma, F., Kikuchi, M., Inada, H., Akagi, S., & Ono, H. (2012, November). Onboard calibration of the ASTER instrument over twelve years. In SPIE Remote Sensing (pp. 853305-853305). International Society for Optics and Photonics.
39. Sakuma, F., Ono, A., Tsuchida, S., Ohgi, N., Inada, H., Akagi, S., & Ono, H. (2005). Onboard calibration of the ASTER instrument. Geoscience and Remote Sensing, IEEE Transactions on, 43(12), 2715-2724.
40. Santer, R., Gu, X. F., Guyot, G., Deuze, J. L., Devaux, C., Vermote, E., & Verbrugghe, M. (1992). SPOT calibration at the La Crau test site (France). Remote Sensing of Environment, 41(2), 227-237.
41. Slater, P. N., Biggar, S. F., Holm, R. G., Jackson, R. D., Mao, Y., Moran, M. S., ... & Yuan, B. (1987). Reflectance-and radiance-based methods for the in-flight absolute calibration of multispectral sensors. Remote Sensing of Environment, 22(1), 11-37.
42. Slater, P. N., Biggar, S. F., Thome, K. J., Gellman, D. I., & Spyak, P. R. (1996). Vicarious radiometric calibrations of EOS sensors. Journal of Atmospheric and Oceanic Technology, 13(2), 349-359.
43. Teillet, P. M., Barker, J. L., Markham, B. L., Irish, R. R., Fedosejevs, G., & Storey, J. C. (2001). Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote sensing of Environment, 78(1), 39-54.
44. Teillet, P. M., Fedosejevs, G., & Thome, K. J. (2004, November). Spectral band difference effects on radiometric cross-calibration between multiple satellite sensors in the Landsat solar-reflective spectral domain. In Remote Sensing (pp. 307-316). International Society for Optics and Photonics.
45. Teillet, P. M., Slater, P. N., Ding, Y., Santer, R. P., Jackson, R. D., & Moran, M. S. (1990). Three methods for the absolute calibration of the NOAA AVHRR sensors in-flight. Remote sensing of Environment, 31(2), 105-120.
46. Thome, K. J. (2002). GROUND-LOOK RADIOMETRIC CALIBRATION APPROACHES FOR REMOTE SENSING IMAGES IN THE SOLAR REFLECTIVE. INTERNATIONAL ARCHIVES OF PHOTOGRAMMETRY REMOTE SENSING AND SPATIAL INFORMATION SCIENCES, 34(1), 255-260.
47. Thome, K. J., Biggar, S. F., & Wisniewski, W. (2003). Cross comparison of EO-1 sensors and other Earth resources sensors to Landsat-7 ETM+ using Railroad Valley Playa. Geoscience and Remote Sensing, IEEE Transactions on, 41(6), 1180-1188.
48. U.S. Geological Survey. (2015 June). LANDSAT 8 (L8) DATA USERS HANDBOOK
49. U.S. Geological Survey. (n.d.). Ivanpah Playa. Retrieved December 7, 2015, from http://calval.cr.usgs.gov/rst-resources/sites_catalog/radiometric-sites/ivanpah/
50. U.S. Geological Survey. (n.d.). Landsat 8. Retrieved December 7, 2015, from http://landsat.usgs.gov/landsat8.php
51. U.S. Geological Survey. (n.d.). Radiometric Sites. Retrieved December 7, 2015, from http://calval.cr.usgs.gov/rst-resources/sites_catalog/radiometric-sites/#Well
52. U.S. Geological Survey. (n.d.). Railroad Valley Playa. Retrieved December 7, 2015, from http://calval.cr.usgs.gov/rst-resources/sites_catalog/radiometric-sites/rrva/
53. U.S. Geological Survey. (n.d.). Sonoran Desert. Retrieved December 7, 2015, from http://calval.cr.usgs.gov/rst-resources/sites_catalog/radiometric-sites/sonoran/
54. Vermote, E., Tanré, D., Deuzé, J. L., Herman, M., Morcrette, J. J., & Kotchenova, S. Y. (2006). Second simulation of a satellite signal in the solar spectrum-vector (6SV). 6S User Guide Version, 3.
55. Villa-Aleman, E., Kurzeja, R. J., & Pendergast, M. M. (2003, September). Temporal, spatial, and spectral variability at the Ivanpah Playa vicarious calibration site. In AeroSense 2003 (pp. 320-330). International Society for Optics and Photonics.
指導教授 陳明桂、林唐煌(Ming-Quey Chen Tang-Huang Lin) 審核日期 2016-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明