博碩士論文 102623017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.238.184.78
姓名 徐彭伯堯(Boryau Hsupeng)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 非對稱電流片磁重聯產生之不連續面與膨脹波
(Formation of discontinuities and expansion waves in the outflow region of magnetic reconnection in an asymmetric current sheet)
相關論文
★ Fast Magnetosonic Shocks in the interplanetary Space and Magnetosphere★ Ring-beam粒子分布之電漿不穩定性模擬研究
★ 電子環射束產生之迴旋脈射不穩定性:電磁波的產生與電子加速
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在太陽風、磁層頂以及夜側電漿片所觀察到的電流片時為非對稱的,在這類電流片裡兩側的電漿密度與磁場大小並不一樣。我們利用混合粒子碼模擬非對稱電流片磁重聯產生的MHD不連續結構與膨脹波。在對稱的電流片中,我們找到了四種複合結構:(1)RD-SS複合結構:慢震波(slow shock,SS)連在旋轉不連續(rotational discontinuity,RD)的下游;(2)SS-RD複合結構:旋轉不連續接連在慢震波之後;(3)SS-RD-SS複合結構:旋轉不連續被困在慢震波裡;以及(4)關閉慢震波(switch-off slow shock,SSS)。在非對稱的電流片中,我們發現在較高密度側的旋轉不連續的磁場旋轉角度通常比低電漿密度側的來得大。在非對稱電流片的模擬中,單獨的旋轉不連續、單獨的慢震波、或是一對各自孤立的旋轉不連續以及慢震波,可產生於電流片的其中一側。在更不對稱的電流片裡,低電漿密度側內的旋轉不連續有可能不存在。在非常不對稱的電流片裡,我們如預期的(Levy et al. [1964])在電漿密度非常高的那一側找到旋轉不連續與其後方的膨脹慢波(slow expansion wave,SE)。
摘要(英) The current sheets observed in the solar wind, magnetopause, and nightside plasma sheet can be asymmetric, in which the plasma densities and/or magnetic field magnitudes on the two sides of the current sheet are not equal. A hybrid code is used to simulate the 1-D Riemann problem for the generation and evolution of MHD discontinuities and expansion waves in the outflow region of magnetic reconnection in an asymmetric current sheet. In a symmetric current sheet, four types of compound structures are found: (a) RD-SS compound structure: slow shock (SS) is attached to the downstream of rotational discontinuity (RD), (b) SS-RD: SS is followed by an adjacent RD, (c) SS-RD-SS: RD is trapped inside SS, and (d) switch-off slow shock (SSS). In the asymmetric current sheet, the rotational angle of magnetic field across an RD on the side with a higher plasma density is usually larger than that with a lower plasma density. In the asymmetric cases, only a pure RD, a single SS, or a pair of separated RD and SS may appear on one side of the current sheet. When the asymmetry is further increased, RD may become absent in the low density side. For a highly asymmetric current sheet, a slow expansion wave (SE) is formed behind the rotational discontinuity (RD) on the side with a very high plasma density, as expected from Levy et al. [1964].
關鍵字(中) ★ 不連續面
★ 膨脹波
★ 電流片
★ 磁重聯
關鍵字(英) ★ discontinuity
★ expansion wave
★ current sheet
★ magnetic reconnection
論文目次 i Abstract
ii 摘要
iii Acknowledgements
page
v......致謝
vi.....Table of Contents
vii....List of Tables
viii...List of Figures
1......Ch 1 Introduction
5......Ch 2 Simulation Model
9......Ch 3 Results of 9 simulation cases
26.....Ch 4 Parameter search with table for 54 simulation cases
33.....Ch 5 Summary
35.....References
參考文獻 [1] Landau, L. D. and Lifshitz, E. M., “Electrodynamics of continuous media”, Course of theoretical physics, Oxford: Pergamon Press, 1960.
[2] Lin, Y. and Lee, L. C., “Structure of Reconnection Layers in the Magnetosphere”, Space Science Reviews, Volume 65, Issue 1-2, pp. 59-179, March 1993.
[3] Chao, J. K. and Goldstein, B., “Modification of the Rankine-Hugoniot relations for shocks in space”, Journal of Geophysical Research, Volume 77, Issue 28, p. 5455, 1972.
[4] Burlaga, L. F. and Ness, N. F., “Tangential Discontinuities in the Solar Wind”, Solar Physics, Volume 9, Issue 2, pp.467-477, Octobers 1969.
[5] Burlaga, L. F., “Nature and origin of directional discontinuities in the solar wind”, Journal of Geophysical Research, Volume 76, Issue 19, p. 4360, 1971.
[6] Lepping, R. P. and Behannon, K. W., “Magnetic field directional discontinuities. I - Minimum variance errors”, Journal of Geophysical Research, vol. 85, Sept. 1, 1980, p. 4695-4703, September 1980.
[7] Berchem, J. and Russell, C. T., “Magnetic field rotation through the magnetopause - ISEE 1 and 2 observations”, Journal of Geophysical Research, vol. 87, Oct. 1, 1982, p. 8139-8148, Octobers 1982.
[8] Neugebauer, M., Clay, D. R., Goldstein, B. E., Tsurutani, B. T., and Zwickl, R. D., “A reexamination of rotational and tangential discontinuities in the solar wind”, Journal of Geophysical Research (ISSN 0148-0227), vol. 89, July 1, 1984, p. 5395-5408, July 1984.
[9] Alexander, C. J., Neugebauer, M., Smith, E. J., and Bame, S. J. “The Relation of Solar Wind Structure to Hydromagnetic Discontinuities”, Sixth International Solar Wind Conference, Volume 2, 1987., p.341, YMCA of the Rockies, Estes Park, Colorado, 1987.
[10] Neugebauer, M., “The structure of rotational discontinuities”, Geophysical Research Letters (ISSN 0094-8276), vol. 16, Nov. 1989, p. 1261-1264, November 1989.
[11] Chao, J. K. and Olbert, S., “Observation of slow shocks in interplanetary space”, Journal of Geophysical Research, Volume 75, Issue 31, p. 6394, 1970
[12] Burlaga, L. F. and Chao, J. K., “Reverse and forward slow shocks in the solar wind”, Journal of Geophysical Research, Volume 76, Issue 31, p. 7516, 1971.
[13] Smith, E. J., Slavin, J. A., Tsurutani, B. T., Feldman, W. C., and Bame, S. J., “Slow mode shocks in the earth′s magnetotail - ISEE-3”, Geophysical Research Letters (ISSN 0094-8276), vol. 11, Oct. 1984, p. 1054-1057, Octobers 1984.
[14] Feldman, W. C., Baker, D. N., Bame, S. J., Birn, J., Hones, E. W., Jr., Tokar, R. L., and Schwartz, S. J., “Power dissipation at slow-mode shocks in the distant geomagnetic tail”, Geophysical Research Letters (ISSN 0094-8276), vol. 11, Oct. 1984, p. 1058-1061, Octobers 1984.
[15] Saito, Y., Mukai, T., Terasawa, T., Nishida, A., Machida, S., Hirahara, M., Maezawa, K., Kokubun, S., and Yamamoto, T., “Slow-mode shocks in the magnetotail”, Journal of Geophysical Research, Volume 100, Issue A12, p. 23567-23582, December 1995
[16] Hoshino, M., Mukai, T., Shinohara, I., Saito, Y., and Kokubun, S., “Slow shock downstream structure in the magnetotail”, Journal of Geophysical Research, Volume 105, Issue A1, p. 337-348, January 2000.
[17] Hsieh, W. C., Shue, J. H., Chao, J. K., Tsai, T. C., Nemecek, Z., and Safrankova, J., “Possible observational evidence of contact discontinuities”, Geophysical Research Letters, Volume 41, Issue 23, pp. 8228-8234, December 2014.
[18] Parker, E. N., “The Solar Hydromagnetic Dynamo”, National Academy of Sciences of the United States of America, Volume 43, Issue 1, pp. 8-14, January 1957.
[19] Sweet, P. A., “Magneto-Hydrostatic Equilibrium in an External Magnetic Field”, Electromagnetic Phenomena in Cosmical Physics, IAU Symposium no. 6., International Astronomical Union. Symposium no. 6, Cambridge University Press, p.499, 1958.
[20] Dungey, J. W., “The Steady State of the Chapman-Ferraro Problem in Two Dimensions”, Journal of Geophysical Research, vol. 66, issue 4, pp. 1043-1047, April 1961.
[21] Vasyliunas, V. M., “Theoretical models of magnetic field line merging. I”, Reviews of Geophysics and Space Physics, vol. 13, Feb. 1975, p. 303-336, February 1975.
[22] Petschek, H. E., “Magnetic Field Annihilation”, in AAS-NASA Symposium on the Physics of Solar Flares, NASA Spec. Publ., p.425, 1964
[23] Biernat, H. K., Heyn, M. F., Rijnbeek, R. P., Semenov, V., and Farrugia, C. J., “The structure of reconnection layers - Application to the earth′s magnetopause”, Journal of Geophysical Research (ISSN 0148-0227), vol. 94, Jan. 1, 1989, p. 287-298, January 1989.
[24] Shi, Y. and Lee, L. C., Structure of the reconnection layer at the dayside magnetopause, Planetary and Space Science, Volume 38, Issue 3, p. 437-458, March 1990.
[25] Lin, Y. and Lee, L. C., “Reconnection layer at the flank magnetopause in the presence of shear flow”, Geophysical Research Letters (ISSN 0094-8276), vol. 21, no. 10, p. 855-858, May 1994.
[26] Sonnerup, B. U. O., Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T., and Russell, C. T., “Evidence for magnetic field reconnection at the earth′s magnetopause”, Journal of Geophysical Research, vol. 86, Nov. 1, 1981, p. 10049-10067, November 1981.
[27] Gosling, J. T., Asbridge, J. R., Bame, S. J., Feldman, W. C., Paschmann, G., Sckopke, N. and Russell, C. T., “Evidence for quasi-stationary reconnection at the dayside magnetopause”, Journal of Geophysical Research, vol. 87, Apr. 1, 1982, p. 2147-2158, April 1982.
[28] Nakamura, M., Fujimoto, M., Kawano, H., Mukai, T., Saito, Y., Yamamoto, T., Tsuruda, K., Terasawa, T., and Kokubun, S., “Geotail observation at the dayside magnetopause-confirmation of reconnection events”, Advances in Space Research, Volume 20, Issue 4-5, p. 779-788, September 1997.
[29] Hones, E. W., Jr., Fritz, T. A., Birn, J., Cooney, J., and Bame, S. J., “Detailed observations of the plasma sheet during a substorm on April 24, 1979”, Journal of Geophysical Research (ISSN 0148-0227), vol. 91, June 1, 1986, p. 6845-6859, June 1986.
[30] Machida, S., Ieda, A., Mukai, T., Saito, Y., and Nishida, A., “Statistical visualization of Earth′s magnetotail during substorms by means of multidimensional superposed epoch analysis with Geotail data”, Journal of Geophysical Research, Volume 105, Issue A11, p. 25291-25304, November 2000.
[31] Genestreti, K. J., Fuselier, S. A., Goldstein, J., Nagai, T., and Eastwood, J. P., “The location and rate of occurrence of near-Earth magnetotail reconnection as observed by Cluster and Geotail”, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 121, p. 98-109, December 2014.
[32] Gosling, J. T., Eriksson, S., Skoug, R. M., McComas, D. J., and Forsyth, R. J., “Petschek-Type Reconnection Exhausts in the Solar Wind Well beyond 1 AU: Ulysses”, The Astrophysical Journal, Volume 644, Issue 1, pp. 613-621, June 2006.
[33] Davis, M. S., Phan, T. D., Gosling, J. T., and Skoug, R. M., “Detection of oppositely directed reconnection jets in a solar wind current sheet”, Geophysical Research Letters, Volume 33, Issue 19, CiteID L19102, Octobers 2006.
[34] Phan, T. D., Gosling, J. T., Davis, M. S., Skoug, R. M., Øieroset, M., Lin, R. P., Lepping, R. P., McComas, D. J., Smith, C. W., Reme, H., and Balogh, A., “A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind”, Nature, Volume 439, Issue 7073, pp. 175-178, January 2006.
[35] Gosling, J. T., “Observations of Magnetic Reconnection in the Turbulent High-Speed Solar Wind”, The Astrophysical Journal, Volume 671, Issue 1, pp. L73-L76, December 2007.
[36] Wang, Y., Wei, F. S., Feng, X. S., Zuo, P. B., Guo, J. P., Xu, X. J., and Li, Z., “Variations of Solar Electron and Proton Flux in Magnetic Cloud Boundary Layers and Comparisons with Those across the Shocks and in the Reconnection Exhausts”, The Astrophysical Journal, Volume 749, Issue 1, article id. 82, 10 pp., April 2012.
[37] Swift, D. W. and Lee, L. C., “Rotational discontinuities and the structure of the magnetopause”, Journal of Geophysical Research, vol. 88, Jan. 1, 1983, p. 111-124, January 1983.
[38] Lin, Y. and Lee, L. C., “Simulation study of the Riemann problem associated with the magnetotail reconnection”, Journal of Geophysical Research, Volume 100, Issue A10, p. 19227-19238, Octobers 1995.
[39] Winske, D., Stover, E. K., and Gary, S. P., “The structure and evolution of slow mode shocks”, Geophysical Research Letters (ISSN 0094-8276), vol. 12, May 1985, p. 295-298, May 1985.
[40] Lee, L. C., Lin, Y., Shi, Y., and Tsurutani, B. T., “Slow shock characteristics as a function of distance from the X-line in the magnetotail”, Geophysical Research Letters (ISSN 0094-8276), vol. 16, Aug. 1989, p. 903-906, August 1989.
[41] Omidi, N. and Winske, D., “Kinetic structure of slow shocks – Effects of the electromagnetic ion/ion cyclotron instability”, Journal of Geophysical Research (ISSN 0148-0227), vol. 97, no. A10, p. 14,801-14,821, Octobers 1992.
[42] Lin, Y. and Lee, L. C., “Chaos and ion heating in a slow shock”, Geophysical Research Letters (ISSN 0094-8276), vol. 18, Aug. 1991, p. 1615-1618, August 1991.
[43] Higashimori, K. and Hoshino, M., “The relation between ion temperature anisotropy and formation of slow shocks in collisionless magnetic reconnection”, Journal of Geophysical Research, Volume 117, Issue A1, CiteID A01220, January 2012.
[44] Whang, Y. C., Zhou, J., Lepping, R. P., and Ogilvie, K. W., “Interplanetary slow shock observed from Wind”, Geophysical Research Letters, Volume 23, Issue 10, p. 1239-1242, 1996.
[45] Whang, Y. C., Fairfield, D., Smith, E. J., Lepping, R. P., Kokubun, S., and Saito, Y., “Observations of double discontinuities in the magnetotail”, Geophysical Research Letters, Volume 24, Issue 24, p. 3153-3156, 1997.
[46] Whang, Y. C., Zhou, J., Lepping, R. P., Szabo, A., Fairfield, D., Kokubun, S., Ogilvie, K. W., and Fitzenreiter, R., “Double discontinuity: A compound structure of slow shock and rotational discontinuity”, Journal of Geophysical Research, Volume 103, Issue A4, p. 6513-6520, April 1998.
[47] Whang, Y. C., Fairfield, D., Lepping, R. P., Mukai, T., Saito, Y., Slavin, J., and Szabo, A., Double discontinuities at the magnetotail plasma sheet-lobe boundary, Annales Geophysicae, vol. 19, Issue 9, pp.1095-1105, September 2001.
[48] Zuo, P. B. and Feng, X. S., “The Plasma and Magnetic Field Characteristics of a Double Discontinuity in Interplanetary Space”, Solar Physics, Volume 240, Issue 2, pp.347-357, February 2007.
[49] Weng, C. J., Lin, C. C., Lee, L. C., and Chao, J. K., “Generation of shock/discontinuity compound structures through magnetic reconnection in the geomagnetic tail”, Physics of Plasmas, Vol. 19 Issue 12, p122904, December 2012.
[50] Lee, L. C., Wu, B. H., Chao, J. K., Lin, C. H., and Li, Y., “Formation of a compound slow shock-rotational discontinuity structure”, Journal of Geophysical Research, Volume 105, Issue A6, p. 13045-13054, June 2000.
[51] Hau, L. N. and Hung, C. C., “Formation of anomalous slow shocks in anisotropic plasmas”, Geophysical Research Letters, Volume 32, Issue 14, CiteID L14103, July 2005.
[52] Liu, Y. H., Drake, J. F., and Swisdak, M., “The effects of strong temperature anisotropy on the kinetic structure of collisionless slow shocks and reconnection exhausts. I. Particle-in-cell simulations”, Volume 18, Issue 9, pp. 092102-092102-13, June 2011.
[53] Liu, Y. H., Drake, J. F., and Swisdak, M., “The effects of strong temperature anisotropy on the kinetic structure of collisionless slow shocks and reconnection exhausts. II. Theory, Physics of Plasmas”, Volume 18, Issue 9, pp. 092102-092102-13, September 2011.
[54] Krauss-Varban, D., Karimabadi, H., and Omidi, N., “Kinetic structure of rotational discontinuities: Implications for the magnetopause”, Journal of Geophysical Research (ISSN 0148-0227), vol. 100, no. A7, p. 11,981-11,999, July 1995.
[55] Lee, L. C. and Kan, J. R., Structure of the magnetopause rotational discontinuity, Journal of Geophysical Research, vol. 87, Jan. 1, 1982, p. 139-143, January 1982.
[56] Levy, R. H., Petschek, H. E., and Siscoe, G. L., “Aerodynamic aspects of the magnetospheric flow”, AIAA Journal, Vol. 2, No. 12 (1964), pp. 2065-2076, December 1964.
[57] Higashimori, K. and Hoshino, M., The relation between ion temperature anisotropy and formation of slow shocks in collisionless magnetic reconnection, Journal of Geophysical Research, Volume 117, Issue A1, CiteID A01220, January 2012.
[58] Winske, D., Stover, E. K., and Gary, S. P., “The structure and evolution of slow mode shocks”, Geophysical Research Letters (ISSN 0094-8276), vol. 12, p. 295-298, May 1985
指導教授 李羅權(Lou-Chuang Lee) 審核日期 2015-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明