博碩士論文 102623021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.239.59.31
姓名 王傑(Jack Chieh Wang)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱
(Tidal Variability Due to the Quasi-Biennial Oscillation and Ionospheric Responses)
相關論文
★ 電離層赤道異常區之電子濃度季節性震盪及日變化★ Development and Validation of an Airglow Photometer for Upper Atmospheric Chemistry
★ 自地面觀測氣輝反演氧原子離子光化學模型★ 福衛三號S4閃爍指數時空變化與潮汐分析
★ 飛鼠號立方衛星電力次系統設計★ 支援飛鼠號立方衛星之S頻段地面站評估及整測
★ 福衛五號軌道推算軟體敏感度及飛行資料分析★ 適用於小型衛星二階段展開太陽能板的鎖定鉸鏈的結構設計,分析以及測試
★ 中央大學地面系統設計、整測與驗證★ 太空飛行器電力次系統硬體迴路測試平台之建立
★ 縮裝型小衛星氧原子酬載:實作、功能與環境驗證★ 應用先進電離層探測儀與類神經網路以建立初步電漿泡預測模型
★ 飛鼠號立方衛星之飛行軟體及韌體設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 準雙年震盪(Quasi-biennial oscillation)為低緯度中層大氣層最主要的震盪現象之一。其成因是來自於熱帶地區的大氣波,包括重力波、開爾文波、羅斯比-重力波,因為具有向上傳播的特性,在平流層對背景風場進行加速作用,使得低緯度的中層大氣物理量具有週期為26到28個月的震盪。例如,在緯向平均、緯向風場中,可以觀察到東、西向風場以近似兩年的週期性交替出現。同時,在高層大氣(高度約為90-120公里,位於中氣層及熱氣層底部)具有主要影響的大氣潮汐也會受到準雙年震盪的調幅。例如,週期為24小時的大氣全日潮,目前普遍認為起源於中層大氣的低緯度地區,在大氣全日潮的發源階段,便會因為都卜勒效應,使貢獻於大氣全日潮的大氣波波長,在經過中層大氣時,受到具有準雙年震盪特性的緯向平均風場調幅,進而影響大氣全日潮的振幅大小。

根據Chen(1992)的研究指出,在平流層觀察到的準雙年震盪現象,也會一併影射到電離層,使電離層產生類似準雙年震盪的週期震盪現象。這代表了平流層及電離層之間,透過大氣波耦合反應,有可能產生相似的反應。我們已經知道,準雙年震盪最主要的影響,就是表現在緯向平均、緯向風場之中。如果我們將太陽同步遷移的全日潮及半日潮潮汐風場結構,置入TIE-GCM模型的下邊界環境(高度為97公里),便可以觀察到潮汐如何影響到熱氣層的中性風,進而發揮類似攪拌的效果,使得位在400公里高的電離層,電子濃度降低,中性分子的氧原子對氮分子的比值也跟著隨之降低[Yamazaki et al, 2013]。綜合了觀測及實驗結果,我們很好奇,在Chen(1992)電離層的實際觀測中,所看到的準雙年震盪結構,是否可以透過在下邊界條件放置不同準雙年震盪相位所擁有的緯向風場結構,而在TIE-GCM模擬出來實際觀測到的電離層構造。

在此次研究之中,首先根據與TIMED衛星資料同化的數值模型實驗,發展出太陽同步遷移大氣潮汐的經驗模型。利用大氣潮汐經驗模型中準雙年震盪參數的調整,我們可以量化中層大氣的準雙年震盪對於大氣潮汐之貢獻值。接著利用TIE-GCM模型執行電離層數值實驗,觀察電離層對於大氣潮汐經驗模型在準雙年震盪調幅之下如何響應。同時,利用多維總體經驗模態分解法(Multi-dimensional Ensemble Empirical Mode Decomposition),將近似兩年週期的太陽F10.7指數分量分析出來,一併放置入TIE-GCM模型之中。利用這個方法,我們可以同時觀察來自上邊界的太陽活動及下邊界的大氣潮汐,在同時具有準雙年震盪的特性之下,對於電離層的貢獻。

我們的研究結果發現,在太陽活動極大期,太陽的準雙年震盪對於電離層的兩年週期震盪具有主導性的地位。而在太陽活動極小期時,具有準雙年震盪特性的太陽活動及大氣潮汐,對於電離層的兩年週期震盪現象效應相當。
摘要(英) The Quasi-biennial Oscillation (QBO) is a persistent oscillation in the zonal mean zonal winds of the low latitude middle atmosphere that is driven by breaking planetary and gravity waves, with a period near two years. The atmospheric tides that dominate the dynamics of the mesosphere and lower thermosphere region (MLT, between heights of 70 to 120 km) are excited in the troposphere and stratosphere, and propagate through QBO-modulated zonal mean zonal wind fields. This allows the MLT tidal response to also be modulated by the QBO, with implications for ionospheric/thermospheric variability. Meanwhile, interannual oscillation in solar radiation could directly drive the variations in the ionosphere with simultaneous period through the photoionization. Many studies also revealed the connection of the solar activities and QBO signal in ionospheric features, e.g. total electron content (TEC).

In this research, we develop an empirical model to isolate stratospheric QBO-related tidal variability in the MLT diurnal and semidiurnal tides using values from assimilated TIMED satellite data. Tidal fields corresponding to stratospheric QBO eastward and westward phases, as well as the artificial solar forcing with QBO period decomposed by Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) analysis from Hilbert-Huang Transform (HHT), are then used to drive the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM).

The numerical experiment results indicate that ionospheric QBO is mainly modulated by the solar QBO by during the solar maximum, since the solar QBO would reach its maximum synchronized with solar cycle. During solar minimum, the ionospheric QBO is modulated from below and above by the stratospheric QBO and solar QBO simultaneously.
關鍵字(中) ★ 準雙年震盪
★ 電離層
★ 全電子含量
★ 大氣潮汐
關鍵字(英) ★ Quasi Biennial Oscillation
★ Ionosphere
★ TEC
★ TIE-GCM
★ Atmospheric Tides
論文目次 Abstract i
Acknowledgement v
Table of Contents vii
List of Figures ix

1 Introduction 1
1.1 Background................................ 1
1.1.1 Earth’s Atmosphere........................ 1
1.1.2 Earth’s Ionosphere ........................ 3
1.1.3 Quasi-Biennial Oscillation .................... 5
1.1.4 Atmospheric Tides ........................ 7
1.2 Mesosphere/Thermosphere-Ionosphere Coupling . . . . . . . . . . . . 10
1.3 Aim&Scope ............................... 13
2 Methodology 17
2.1 TIE-GCM................................. 17
3 Results 19
3.1 Migrating Tidal Components from TIE-GCM / TIMED Assimilated Data.................................... 19
3.2 Empirical Migrating Tidal Model .................... 23
3.2.1 Modulation by the Stratospheric QBO..........24
3.2.2 Modulation by the Solar Input.................. 27
3.3 TIE-GCM Experiment .......................... 28
3.3.1 Stratospheric QBO Effect in the Ionosphere . . . . . . . . . . 29
3.3.2 Solar QBO Effect in the Ionosphere............... 32
4 Discussion......................................67
5 Conclusion & Future Work........................73
Bibliography .....................................75
參考文獻 Akmaev, R. A., Seasonal variations of the terdiurnal tide in the mesosphere and lower thermosphere: A model study, Geophys. Res. Lett., 28(19), 3817–3820, doi: 10.1029/2001gl013002, 2001.
Anstey, J. A., and T. G. Shepherd, High-latitude influence of the quasi-biennial os- cillation, Quarterly Journal of the Royal Meteorological Society, 140(678), 1–21, doi:10.1002/qj.2132, 2013.
Apostolov, E. M., Quasi-biennial oscillation in sunspot activity, Bulletin of the As- tronomical Institutes of Czechoslovakia, 36, 97–102, 1985.
Baldwin, M. P., et al., The quasi-biennial oscillation, Reviews of Geophysics, 39(2), 179–229, 2001.
Burrage, M. D., M. E. Hagan, W. R. Skinner, D. L. Wu, and P. B. Hays, Long-term variability in the solar diurnal tide observed by hrdi and simulated by the gswm, Geophysical Research Letters, 22(19), 2641–2644, 1995.
Burrage, M. D., R. A. Vincent, H. G. Mayr, W. R. Skinner, N. F. Arnold, and P. B. Hays, Long-term variability in the equatorial middle atmosphere zonal wind, Jour- nal of Geophysical Research: Atmospheres (1984–2012), 101(D8), 12,847–12,854, 1996.
Calvo, N., M. A. Giorgetta, R. Garcia-Herrera, and E. Manzini, Nonlinearity of the combined warm enso and qbo effects on the northern hemisphere polar vortex in maecham5 simulations, J. Geophys. Res., 114 (D13), doi:10.1029/2008jd011445, 2009.
Chang, L. C., S. E. Palo, and H.-L. Liu, Short-term variation of the s = 1 nonmigrating semidiurnal tide during the 2002 stratospheric sudden warming, J. Geophys. Res., 114(D3), doi:10.1029/2008jd010886, 2009.
Chang, L. C., C.-H. Lin, J.-Y. Liu, N. Balan, J. Yue, and J.-T. Lin, Seasonal and local time variation of ionospheric migrating tides in 2007-2011 formosat-3/cosmic and tie-gcm total electron content, J. Geophys. Res. Space Physics, 118 (5), 2545–2564, doi:10.1002/jgra.50268, 2013.
Chang, L. C., J. Yue, W. Wang, Q. Wu, and R. R. Meier, Quasi two day wave- related variability in the background dynamics and composition of the meso- sphere/thermosphere and the ionosphere, J. Geophys. Res. Space Physics, 119 (6), 4786–4804, doi:10.1002/2014ja019936, 2014.
Chang, L. C., Y.-Y. Sun, J. Yue, J. C. Wang, and S.-H. Chien, Coherent seasonal, annual, and quasi-biennial variations in ionospheric tidal/spw amplitudes, J. Geo- phys. Res. Space Physics, doi:10.1002/2015ja022249, 2016.
Chen, P.-R. . R., Evidence of the ionospheric response to the qbo, Geophysical research letters, 19(11), 1089–1092, 1992.
Dickinson, R. E., E. C. Ridley, and R. G. Roble, A three-dimensional general circula- tion model of the thermosphere, Journal of Geophysical Research: Space Physics, 86(A3), 1499–1512, 1981.
Dickinson, R. E., E. C. Ridley, and R. G. Roble, Thermospheric general circula- tion with coupled dynamics and composition, Journal of the atmospheric sciences, 41(2), 205–219, 1984.
Echer, E., On the quasi-biennial oscillation (qbo) signal in the fof2 ionospheric pa- rameter, Journal of Atmospheric and Solar-Terrestrial Physics, 69(4-5), 621–627, doi:10.1016/j.jastp.2006.11.001, 2007.
Ekanayake, E. M. P., T. Aso, and S. Miyahara, Background wind effect on propagation of nonmigrating diurnal tides in the middle atmosphere, Journal of Atmospheric and Solar-Terrestrial Physics, 59(4), 401–429, 1997.
England, S. L., T. J. Immel, J. D. Huba, M. E. Hagan, A. Maute, and R. DeMajistre, Modeling of multiple effects of atmospheric tides on the ionosphere: An examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere, J. Geophys. Res., 115 (A5), doi:10.1029/2009ja014894, 2010.
Fernández, L. I., A. M. Meza, and A. G. Elías, Quasi-biennial oscillation in gps vtec measurements, Advances in Space Research, 54(2), 161–167, doi: 10.1016/j.asr.2014.03.027, 2014.
Forbes, J. M., Atmospheric tide: 2. the solar and lunar semidiurnal components, Journal of Geophysical Research: Space Physics, 87 (A7), 5241–5252, 1982.
Forbes, J. M., Tidal and planetary waves, The upper mesosphere and lower thermo- sphere: a review of experiment and theory, pp. 67–87, 1995.
Forbes, J. M., M. E. Hagan, X. Zhang, and K. Hamilton, Upper atmosphere tidal oscillations due to latent heat release in the tropical troposphere, Annales Geophys- icae, 15(9), 1165–1175, 1997.
Forbes, J. M., X. Zhang, S. Palo, J. Russell, C. J. Mertens, and M. Mlynczak, Tidal variability in the ionospheric dynamo region, J. Geophys. Res., 113(A2), doi:10.1029/2007ja012737, 2008.
Forbes, J. M., X. Zhang, S. Bruinsma, and J. Oberheide, Lunar semidiurnal tide in the thermosphere under solar minimum conditions, J. Geophys. Res. Space Physics, 118(4), 1788–1801, doi:10.1029/2012ja017962, 2013.
Gabis, I., and O. Troshichev, Influence of solar uv irradiance on quasi-biennial os- cillations in the earth’s atmosphere, Advances in Space Research, 34(2), 355–360, 2004.
Gabis, I. P., Quasi-biennial oscillation (qbo) of tropical total ozone under alternative qbo scenarios of equatorial stratospheric wind, Advances in Space Research, doi: 10.1016/j.asr.2014.01.019, 2014.
Gao, H., J. Xu, and Q. Wu, Seasonal and qbo variations in the oh nightglow emission observed by timed/saber, J. Geophys. Res., 115(A6), doi:10.1029/2009ja014641, 2010.
Garcia, R. R., T. J. Dunkerton, R. S. Lieberman, and R. A. Vincent, Climatology of the semiannual oscillation of the tropical middle atmosphere, JOURNAL OF GEOPHYSICAL RESEARCH-ALL SERIES-, 102, 26–019, 1997.
Hagan, M. E., Comparative effects of migrating solar sources on tidal signatures in the middle and upper atmosphere, Journal of Geophysical Research: Atmospheres, 101(D16), 21,213–21,222, 1996.
Hagan, M. E., Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 107 (D24), doi:10.1029/2001jd001236, 2002.
Hagan, M. E., and J. M. Forbes, Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release, Journal of Geo- physical Research: Space Physics, 108(A2), 2003.
Hagan, M. E., and R. G. Roble, Modeling diurnal tidal variability with the national center for atmospheric research thermosphere-ionosphere-mesosphere- electrodynamics general circulation model, Journal of Geophysical Research: Space Physics, 106(A11), 24,869–24,882, 2001.
Hagan, M. E., M. D. Burrage, J. M. Forbes, J. Hackney, W. J. Randel, and X. Zhang, Qbo effects on the diurnal tide in the upper atmosphere, Earth Planets and Space, 51(7/8), 571–578, 1999.
Hays, P. B., V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, The high-resolution doppler imager on the upper atmosphere research satellite, Journal of Geophysical Research: Atmospheres, 98 (D6), 10,713–10,723, 1993.
Holton, J. R., and R. S. Lindzen, An updated theory for the quasi-biennial cycle of the tropical stratosphere, Journal of the Atmospheric Sciences, 29(6), 1076–1080, 1972.
Hough, S. S., On the application of harmonic analysis to the dynamical theory of the tides. part i. on laplace’s’ oscillations of the first species,’and on the dynamics of ocean currents., Proceedings of the Royal Society of London, 61 (369-377), 236–238, 1897.
Hough, S. S., On the application of harmonic analysis to the dynamical theory of the tides. part ii: On the general integration of laplace’s dynamical equations, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 191, 139–185, 1898.
Huang, F. T., Seasonal behavior of the semidiurnal and diurnal tides, and mean flows at 95 km, based on measurements from the high resolution doppler imager (hrdi) on the upper atmosphere research satellite (uars), J. Geophys. Res., 108(D12), doi:10.1029/2002jd003189, 2003.
Huang, F. T., H. G. Mayr, C. A. Reber, J. M. Russell, M. Mlynczak, and J. G. Mengel, Stratospheric and mesospheric temperature variations for the quasi-biennial and semiannual (qbo and sao) oscillations based on measurements from saber (timed) and mls (uars), in Annales geophysicae, vol. 24, pp. 2131–2149, 2006.
Huang, F. T., H. G. Mayr, C. A. Reber, J. M. Russell, M. G. Mlynczak, and J. G. Mengel, Ozone quasi-biennial oscillations (qbo), semiannual oscillations (sao), and correlations with temperature in the mesosphere, lower thermosphere, and strato- sphere, based on measurements from saber on timed and mls on uars, J. Geophys. Res., 113(A1), doi:10.1029/2007ja012634, 2008.
Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. . C. Yen, C. C. Tung, and H. H. Liu, The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 903–995, The Royal Society, 1998.
Immel, T. J., E. Sagawa, S. L. England, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, and L. J. Paxton, Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33(15), doi: 10.1029/2006gl026161, 2006.
Jones, M., J. M. Forbes, and M. E. Hagan, Tidal-induced net transport effects on the oxygen distribution in the thermosphere, Geophys. Res. Lett., 41(14), 5272–5279, doi:10.1002/2014gl060698, 2014.
Kelley, M. C., The Earth’s Ionosphere: Plasma Physics & Electrodynamics, vol. 96, Academic press, 2009.
Killeen, T. L., Q. Wu, S. C. Solomon, D. A. Ortland, W. R. Skinner, R. J. Niciejewski, and D. A. Gell, Timed doppler interferometer: Overview and recent results, Journal of Geophysical Research: Space Physics, 111 (A10), 2006.
Lindzen, R. S., and S. Chapman, Atmospheric tides, Space Science Reviews, 10(1), 3–188, 1969.
Lu, H., and M. J. Jarvis, Is the stratospheric quasi-biennial oscillation affected by solar wind dynamic pressure via an annual cycle modulation?, Journal of Geophysical Research: Atmospheres, 116(D6), 2011.
Matsushita, S., Lunar tides in the ionosphere, Springer, 1967a.
Matsushita, S., Solar quiet and lunar daily variation fields in physics of geomagnetic
phenomena, vol. i, edited by s. matsushita and wh campbell, 1967b.
Matthes, K., K. Kodera, R. R. Garcia, Y. Kuroda, D. R. Marsh, and K. Labitzke, The importance of time-varying forcing for qbo modulation of the atmospheric 11 year solar cycle signal, J. Geophys. Res. Atmos., 118(10), 4435–4447, doi: 10.1002/jgrd.50424, 2013.
Mayr, H. G., J. G. Mengel, K. L. Chan, and F. T. Huang, Middle atmosphere dy- namics with gravity wave interactions in the numerical spectral model: Zonal-mean variations, Journal of Atmospheric and Solar-Terrestrial Physics, 72(11-12), 807– 828, doi:10.1016/j.jastp.2010.03.018, 2010.
Mayr, H. G., J. G. Mengel, K. L. Chan, and F. T. Huang, Middle atmosphere dy- namics with gravity wave interactions in the numerical spectral model: Tides and planetary waves, Journal of Atmospheric and Solar-Terrestrial Physics, 73(7-8), 711–730, doi:10.1016/j.jastp.2011.01.019, 2011.
McLandress, C., G. G. Shepherd, and B. H. Solheim, Satellite observations of ther- mospheric tides: Results from the wind imaging interferometer on uars, Journal of Geophysical Research: Atmospheres (1984–2012), 101(D2), 4093–4114, 1996.
Mukhtarov, P., and D. Pancheva, Global ionospheric response to nonmigrating de3 and de2 tides forced from below, Journal of Geophysical Research: Space Physics, 116(A5), 2011.
Mukhtarov, P., D. Pancheva, and B. Andonov, Global structure and sea- sonal and interannual variability of the migrating diurnal tide seen in the saber/timed temperatures between 20 and 120 km, J. Geophys. Res., 114(A2), doi:10.1029/2008ja013759, 2009.
Oberheide, J., J. M. Forbes, K. Häusler, Q. Wu, and S. L. Bruinsma, Tropospheric tides from 80 to 400 km: Propagation, interannual variability, and solar cycle effects, J. Geophys. Res., 114, doi:10.1029/2009jd012388, 2009.
Oberheide, J., J. M. Forbes, X. Zhang, and S. L. Bruinsma, Wave-driven variability in the ionosphere-thermosphere-mesosphere system from timed observations: What contributes to the wave 4?, J. Geophys. Res., 116(A1), doi:10.1029/2010ja015911, 2011.
Pancheva, D., P. Mukhtarov, and B. Andonov, Global structure, seasonal and inter- annual variability of the migrating semidiurnal tide seen in the saber/timed tem- peratures (2002–2007), in Annales Geophysicae, vol. 27, pp. 687–703, Copernicus GmbH, 2009.
Pancheva, D., et al., Global-scale tidal variability during the psmos campaign of june–august 1999: interaction with planetary waves, Journal of Atmospheric and Solar-Terrestrial Physics, 64(17), 1865–1896, 2002.
Pedatella, N. M., J. M. Forbes, A. Maute, A. D. Richmond, T.-W. . Fang, K. M. Larson, and G. Millward, Longitudinal variations in the f region ionosphere and the topside ionosphere-plasmasphere: Observations and model simulations, J. Geophys. Res., 116(A12), doi:10.1029/2011ja016600, 2011.
Pedatella, N. M., M. E. Hagan, and A. Maute, The comparative importance of de 3, se 2, and spw 4 on the generation of wavenumber-4 longitude structures in the low-latitude ionosphere during september equinox, Geophysical Research Letters, 39(19), n/a–n/a, doi:10.1029/2012gl053643, 2012.
Qian, L., et al., The ncar tie-gcm, Modeling the Ionosphere-Thermosphere System, pp. 73–83, 2014.
Reed, R. J., W. J. Campbell, L. A. Rasmussen, and D. G. Rogers, Evidence of a downward-propagating, annual wind reversal in the equatorial stratosphere, Jour- nal of Geophysical Research, 66 (3), 813–818, 1961.
Richards, P. G., J. A. Fennelly, and D. G. Torr, Euvac: A solar euv flux model for aeronomic calculations, Journal of Geophysical Research: Space Physics, 99(A5), 8981–8992, 1994.
Richmond, A. D., E. C. Ridley, and R. G. Roble, A thermosphere/ionosphere gen- eral circulation model with coupled electrodynamics, Geophysical Research Letters, 19(6), 601–604, 1992.
Roble, R. G., E. C. Ridley, A. D. Richmond, and R. E. Dickinson, A coupled thermo- sphere/ionosphere general circulation model, Geophysical Research Letters, 15 (12), 1325–1328, 1988.
Sato, K., and T. J. Dunkerton, Estimates of momentum flux associated with equa- torial kelvin and gravity waves, Journal of Geophysical Research: Atmospheres, 102(D22), 26,247–26,261, 1997.
Schunk, R., and A. Nagy, Ionospheres: physics, plasma physics, and chemistry, Cam- bridge university press, 2009.
Taguchi, M., Changes in frequency of major stratospheric sudden warmings with el niño/southern oscillation and quasi-biennial oscillation, Journal of the Meteorological Society of Japan, 93(1), 99–115, doi:10.2151/jmsj.2015-007, 2015.
Tang, W., X.-H. . Xue, J. Lei, and X.-K. . Dou, Ionospheric quasi-biennial oscillation in global tec observations, Journal of Atmospheric and Solar-Terrestrial Physics, 107, 36–41, doi:10.1016/j.jastp.2013.11.002, 2014.
Teitelbaum, H., and F. Vial, On tidal variability induced by nonlinear interaction with planetary waves, Journal of Geophysical Research: Space Physics (1978–2012), 96(A8), 14,169–14,178, 1991.
Veryard, R. G., and R. A. Ebdon, Fluctuations in tropical stratospheric winds, Me- teorol. Mag, 90, 125–143, 1961.
Wu, D. L., P. B. Hays, and W. R. Skinner, A least squares method for spectral analysis of space-time series, Journal of the Atmospheric Sciences, 52 (20), 3501–3511, 1995.
Wu, Q., T. L. Killeen, D. A. Ortland, S. C. Solomon, R. D. Gablehouse, R. M. Johnson, W. R. Skinner, R. J. Niciejewski, and S. J. Franke, Timed doppler inter- ferometer (tidi) observations of migrating diurnal and semidiurnal tides, Journal of atmospheric and solar-terrestrial physics, 68 (3), 408–417, 2006.
Wu, Q., S. C. Solomon, Y.-H. . H. Kuo, T. L. Killeen, and J. Xu, Spectral analysis of ionospheric electron density and mesospheric neutral wind diurnal nonmigrating tides observed by cosmic and timed satellites, Geophysical Research Letters, 36 (14), 2009.
Wu, Q., D. A. Ortland, S. C. Solomon, W. R. Skinner, and R. J. Niciejewski, Global distribution, seasonal, and inter-annual variations of mesospheric semidi- urnal tide observed by timed tidi, Journal of Atmospheric and Solar-Terrestrial Physics, 73(17-18), 2482–2502, doi:10.1016/j.jastp.2011.08.007, 2011.
Wu, Q., D. A. Ortland, B. Foster, and R. G. Roble, Simulation of nonmigrating tide influences on the thermosphere and ionosphere with a timed data driven tiegcm, Journal of Atmospheric and Solar-Terrestrial Physics, 90-91, 61–67, doi: 10.1016/j.jastp.2012.02.009, 2012.
Wu, Q., et al., Global distribution and interannual variations of mesospheric and lower thermospheric neutral wind diurnal tide: 1. migrating tide, J. Geophys. Res., 113(A5), doi:10.1029/2007ja012542, 2008a.
Wu, Q., et al., Global distribution and interannual variations of mesospheric and lower thermospheric neutral wind diurnal tide: 2. nonmigrating tide, Journal of Geophysical Research: Space Physics, 113(A5), 2008b.
Xu, J., A. K. Smith, H.-L. . Liu, W. Yuan, Q. Wu, G. Jiang, M. G. Mlynczak, J. M. Russell, and S. J. Franke, Seasonal and quasi-biennial variations in the migrating diurnal tide observed by thermosphere, ionosphere, mesosphere, energetics and dynamics (timed), J. Geophys. Res., 114 (D13), doi:10.1029/2008jd011298, 2009.
Yamazaki, Y., and A. D. Richmond, A theory of ionospheric response to upward- propagating tides: Electrodynamic effects and tidal mixing effects, J. Geophys. Res. Space Physics, 118 (9), 5891–5905, doi:10.1002/jgra.50487, 2013.
Yudin, V. A., M. A. Geller, B. V. Khattatov, D. A. Ortland, M. D. Burrage, C. McLandress, and G. G. Shepherd, Tmtm simulations of tides: Comparison with uars observations, Geophysical research letters, 25(2), 221–224, 1998.
Zaqarashvili, T. V., M. Carbonell, R. Oliver, and J. L. Ballester, Quasi-biennial oscillations in the solar tachocline caused by magnetic rossby wave instabilities, The Astrophysical Journal Letters, 724 (1), L95, 2010.
Zhang, X., J. M. Forbes, and M. E. Hagan, Longitudinal variation of tides in the mlt region: 2. relative effects of solar radiative and latent heating, J. Geophys. Res., 115(A6), doi:10.1029/2009ja014898, 2010.
指導教授 張起維(Loren Chang) 審核日期 2016-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明