博碩士論文 102624004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.119.255.94
姓名 鄭慧筠(Hui-yun Zheng)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 地震誘發楔型滑動之Newmark位移分析─ 以大光包巨型山崩為例
(Newmark displacement analysis for earthquake-triggered wedge failure – giant wedge failure of Daguangbao landslide)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 2008年汶川地震誘發中國四川省的大光包山崩,其為汶川地震所誘發規模最大之巨型山崩,土方量高達約10.51億立方公尺。基於災前災之地形變化,以及野外調查建立之地質構造模式,推論此山崩為楔型破壞,兩滑動面為層面及高角度節理,其滑動方向大略沿著其弱面之交線方向 (N70°E/14°),滑行距離約1900公尺。楔型破壞規模一般不大,因此,地震誘發楔型破壞之大光包山崩為十分罕見之案例。本研究主要目的是利用Newmark位移分析法計算大光包楔型塊體受震後之位移量變化。過去Newmark位移分析法常用於分析邊坡受震後之永久位移,一般常用於平面型破壞及圓弧型破壞之邊坡,楔型破壞之Newmark分析案例較少見。根據前人研究,楔型體穩定性分析之方法有剛塊法(Rigid Wedge Method)及最大剪力法(Maximum Shear Stress Method),Ghosh and Haupt (1989)利用剛塊法進行楔型體之Newmark分析,該分析基於下列四點假設:(1)滑動塊體為一剛體;(2)不需考慮垂直於滑動方向之水平地震加速度;(3)垂直地震加速度可被忽略;(4)假設摩擦係數為一定值,不隨速度和位移改變。但這些假設並不適用於每個案例。因此,本研究探討Ghosh and Haupt所提出假設之適用性,得到下列結論:(1)當破壞形式越接近平面型破壞、弱面視傾角越小、摩擦係數越小時,剛塊法及最大剪力法之結果相差不大,在這三個條件下可用簡單之剛塊法進行塊體之穩定性計算;(2)使用剛塊法時,在弱面摩擦係數小、弱面交線傾角陡與弱面視傾角偏緩之情況下,垂直之地震加速度影響較大不可被忽略;(3)垂直於滑動方向之水平地震加速度之方向若朝向摩擦係數較低、視傾角較大之弱面及弱面交線傾角較大之條件下,有無考慮此方向地震加速度所得之塊體穩定性差異大。另根據前人針對大光包山崩滑動面材料旋剪試驗結果,建立速度與穩態摩擦係數間之關係式。將所得之速度位移相依摩擦律引入Newmark位移法,並透過剛塊法與最大剪力法計算,可得大光包楔型破壞在地震過程中之速度與位移量。結果顯示大光包之楔型體受地震力作用的影響後,並不會產生長距離滑移的現象,然而,有無考慮地下水之影響亦會造成結果不同。根據控制因素分析,本研究採用之地震紀錄地震頻率過高,可能是影響Newmark分析結果的主要原因。因此,山崩處之場址效無法評估,可能造成Newmark分析結果與事實不符。
摘要(英) The Daguangbao landslide which triggered by the 2008 Wenchuan earthquake is the largest earthquake-triggered landslides. The volume of moving mass is about 10.51×10^8 m3. The landslide is a wedge failure, based on the pre- and post- DTMs and the geological structure model established by field works. The two sliding planes of Daguangbao landslide are constituted by the dolomite and fault gouge and the wedge slid along the intersection line of two slip planes (N70°E/14°). Daguangbao landslide is a catastrophic giant landslide taking place through wedge failure, but the scale of wedge failure is small in common case. To analysis the stability of wedge failure, we conduct Rigid Wedge Method (RWM) and Maximum Shear Stress Method (MSSM). Ghosh and Haupt used RWM with Newmark displacement analysis to calculate the permanent displacement based on following assumptions:(1) The sliding block is a rigid block; (2) The horizontal seismic acceleration which perpendicular to sliding direction does not require to be considered;(3) The vertical seismic acceleration can be ignored;(4) The friction coefficient is constant. These assumptions are not suitable for all case of wedge failure. In this study, we explore different conditions of landslide occurrence with these assumptions and use Newmark displacement analysis combining with the Rigid Wedge Method (RWM) and Maximum Shear Stress Method (MSSM) to calculate the permanent displacement of Daguangbao landslide. We conclude three points as following: (1) We simplified the calculation of safety factor (F.S.) with the usage of RWM when the failure closes to plane failure and the friction coefficient and the apparent dip of weak planes are small; (2) The vertical acceleration can’t be ignored when the plunge of intersection line is large, and the friction coefficient and apparent dip of weak planes are small; (3) The horizontal acceleration (ah) which is perpendicular to intersection line can’t be ignored, when the plunge of intersection line is large, and the points toward the plane of lower friction coefficient and larger apparent dip of weak plane. The friction law of weak plane materials is established from rotary shear tests. The results show that the Daguangbao landslide only slips respectively 0.003 m and 0.06 m through the Newmark displacement analysis combing with RWM and MSSM. The influence of groundwater is not considered in this study, which cause a different result probably. Accroding to the analysis of controlling factors, the two station with high frequency of the seismic acceleration is the main reason which affect the result of Newmark displacement method. The results show that the frequency of seismic acceleration probably significantly impacts the Newmark analysis, and the site effect annnot be considered in the analysis.
關鍵字(中) ★ 地震誘發山崩
★ Newmark位移分析法
★ 楔型破壞
★ 剛塊法與最大剪力法
★ 速度-位移相依摩擦律
關鍵字(英) ★ Earthquake-triggered landslide
★ Newmark displacement method Wedge failure
★ Rigid wedge method and maximum shear stress method
★ Velocity-displacement dependent friction law
論文目次 摘要 i

ABSTRACT iii

誌謝 vi

目錄 vii

圖目錄 x

表目錄 xvi

符號表 xvii

一、 緒論 1

1.1 研究背景與動機 1

1.2 論文內文概述 3

二、 文獻回顧 4

2.1 大光包山崩之背景介紹 4

2.2 楔型破壞之穩定性分析 8

2.2.1 楔型塊體之參數定義 9

2.2.2 剛塊法 (Rigid Wedge Method) 12

2.2.3 最大剪力法(Maximum Shear Strength Method) 12

2.3 Newmark 位移分析法 14

2.3.1 平面型破壞 (Plane failure) 16

2.3.2 圓弧型破壞 (Circular failure) 17

2.3.3 楔型破壞 (Wedge failure) 17

2.4 速度-位移相依摩擦律 20

三、 資料蒐集 23

3.1 大光包滑動面之材料旋剪試驗結果 23

3.1.1 白雲岩旋剪試驗資料 23

3.1.2 斷層泥旋剪試驗資料 24

3.2 地震加速度資料 25

四、 研究結果 29

4.1 滑動楔型體之剛體假設合宜性探討 29

4.1.1 剛塊法與最大剪力法之比較 29

4.1.2 受震位移量分析 33

4.2 垂直之地震加速度對楔型破壞穩定性分析之影響 36

4.3垂直弱面交線之水平地震加速度對楔型破壞穩定性分析之影響 41

4.4 楔型破壞之Newmark分析 47

4.4.1 Newmark 位移分析法計算流程 47

4.4.2 楔型體Newmark分析程式驗證 48

4.5 汶川地震對大光包楔型破壞之影響 54

4.5.1 大光包楔型破壞滑動面材料之速度-位移相依摩擦律 54

4.5.2 Newmark位移分析法之結果 63

4.5.3 大光包楔型體滑動以及震後觸發運動特性分析 69

4.5.4 滑動塊體運動歷程能量變化分析 71

五、 綜合討論 74

5.1 楔型體Newmark分析假設條件之適用性 74

5.2.1 地震加速度頻率之影響 75

5.2.2 滑動面之摩擦係數影響 80

六、 結論 83

參考文獻 85

附錄 90

頻譜分析程式 90

剛塊法之Newmark分析程式 92

最大剪力法之Newmark分析程式 96
參考文獻 王士榮(2002),「以位移法分析自然邊坡在地震力作用下的平面式破壞」,國立成功大學,碩士論文。

中國地震局工程力學研究所國家強震動台網中心。

李錫堤(1989),「岩楔安定性之敏感度分析」,工程地質技術應用研討會論文集,315-343頁。

李旺儒(2006),「比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究」,國立中央大學,碩士論文。

徐鐵良(1993),地質與工程,台灣工程基本資料叢書之四,十一版,台北。

殷躍平、成余糧、王軍、王猛、劉彬、宋云和梁京濤(2011),「汶川地震觸發大光包巨型滑坡遙感研究」,工程地質學報, 19,674-684頁。

張偉鋒、黃潤秋和斐向軍(2015),「大光包滑坡運動特徵及其過程分析」。

曹家哲(2014),「汶川地震誘發大光包巨型山崩啟動及幾何特性研究」,國立中央大學,碩士論文。

黃潤秋、斐向軍和李天斌(2008),「汶川地震觸發大光包巨型滑坡基本特徵及形成機理分析」,工程地質學報, 16,730-741頁。

黃潤秋、張偉鋒和斐向軍(2014),「大光包滑坡工程地質研究」,工程地質學報, 22,557-585頁。

溫郁菁(2003),「以位移法分析自然邊坡在地震力作用下的曲面型破壞」,國立成功大學,碩士論文。

劉佑榮、唐明輝(1999),岩體力學,化學工業出版社。

譚凱、喬學均、楊少敏和王琪(2011),「汶川地震GPS形變约束的破裂分段特征及滑移」,測繪學報, 40(6),703-709頁。

Aydan, Ö., and Kumsar, H., 2010. An experimental and theoretical approach on the modeling of sliding response of rock wedges under dynamic loading, Rock mechanics and rock engineering, Vol. 43(6), pp. 821-830.

Chen, W. F., and Liu, X. L., 1990. Limit analysis in soil mechanics, Geotechnical Engineering, pp. 405-436.

Dieterich, J. H., 1979. Modeling of rock friction: 1. Experimental results and constitutive equations, Journal of Geophysical Research: Solid Earth (1978–2012), Vol. 84(B5), pp. 2161-2168.

Ghosh, A., and Haupt, W., 1989. Computation of the Seismic Stability of Rock Wedges, Rock Mechanics and Rock Engineering, Vol. 22, pp. 109-125.

Hirose, T., and Shimamoto, T., 2005. Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting, Journal of Geophysical Research: Solid Earth (1978-2012), Vol. 110 (B5).

Hoek, E., and Bray, J., 1974. Rock slope engineering, 2nd Edition.

Huang, C. C., Lee, Y. H., Liu, H. P., Keefer, D. K., and Jibson, R. W.,2001. Influence of surface-normal ground acceeration on the initiation of the Jih-Feng-Erh-Shan landslide during the 1999 Chi-Chi, Taiwan, earthquake, Bulletin of the Seismological of America, Vol. 91, pp. 953-958.

Hudson, J. A., and Harrison, J. P., 2000. Engineering rock mechanics-an introduction to the principles, Elsevier.

Kobayashi, Y., 1984. Back analysis of several earthquake induced slope failures on the Izu Peninsula, Japan, Proceedings of the Eighth World Conference on Earthquake Engineering, Vol. 3, pp. 405-412.

Lin, A., Chen, A., Liau, C. F., Lee, C. T., Lin, C. C., Lin, P. S., Wen, S. C., and Ouchi, T., 2001. Frictional fusion due to coseismic landsliding during the 1999 Chi - Chi (Taiwan) ML 7.3 Earthquake, Geophysical Research Letters, Vol. 28 (20), pp. 4011-4014.

Newmark, N. M., 1965. Effects of earthquakes on dams and embankments, Geotechnique, Vol. 15, pp. 139-159.

Norrish, N. I., and Wyllie, D. C., 1996. Landslides: investigation and mitigation, Transportation Research Board Special Report, Vol. 247, pp. 391-425.

Romeo, R., 1998. Seismically induced landslide displacements: a predictive model, General Assembly of European Geophysical Society, Vol. 9.

Ruina, A. L., 1983. Slip instability and state variable friction laws, Journal of Geophysical Research, Vol. 88, pp. 359-370.

Shand, S.J., 1916. The pseudotachylyte of Parijs (Orange Free State), and its relation to ‘Trap-Shotten Gneiss’ and ‘Flinty Crust-Rock’, Quarterly Journal of the Geological Society of London, Vol. 72, pp. 198-221.

Spray, J. G., 1995. Pseudotachylyte controversy: Fact or friction?, Geology, Vol 23(12), pp. 1119-1122.

Terzaghi, K., 1950. Mechanism of landslides, Geological Society of America (Berkey Volume), pp. 83-123.

Togo, T., Shimamoto, T., Dong, J. J., Lee, C. T., and Yang, C. M., 2014. Triggering and runaway processes of catastrophic Tsaoling landslide induced by the 1999 Taiwan Chi‐Chi earthquake, as revealed by high‐velocity friction experiments, Geophysical Research Letters, Vol. 41(6), pp. 1907-1915.

Voight, B., and Faust, C., 1982. Frictional heat and strength loss in some rapid landslides, Geotechnique, Vol. 32(1), pp. 43-54.

Wilson, R. C., and Keefer, D. K., 1983. Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake, Bulletin of the Seismological Society of America, Vol. 73(3), pp. 863-877.

Yang, C. M., Yu, W. L., Dong, J. J., Kuo, C. Y., Shimamoto, T., Lee, C. T., Togo, T., and Miyamoto, Y., 2014. Initiation, movement, and run-out of the giant Tsaoling landslide - What can we learn from a simple rigid block model and a velocity-displacement dependent friction law?, Engineering Geology, Vol. 182, pp. 158-181.

You, L., and Michalowski, R. L., 1999. Displacement charts for slopes subjected to seismic loads, Computers and Geotechnics, Vol. 25(1), pp. 45-55.

Yu, H., Jiang, W., Yang, Y., Xie, Q., Huang, L., Tan, P., and Li, L., 2012. Data processing and analysis of strong motion records from the Ms8.0 Wenchuan, China Earthquake, Institute of Engineering Mechanics.
指導教授 董家鈞(Jia-jun Dong) 審核日期 2015-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明