博碩士論文 102624012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:34.231.247.139
姓名 凃佑霖(You-lin Tu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 二維有限域溶質傳輸解析解模式發展
(Analytical solutions for two-dimensional advective-dispersive equation in a finite spatial domain)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 有限長度圓形土柱實驗二維溶質傳輸之解析解
★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響
★ 關渡平原地下水流動模擬★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度
★ 關渡濕地沉積物中砷之地化循環與分布★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2020-7-1以後開放)
摘要(中) 地下水污染傳輸模式是了解預測地質介質中污染物傳輸的重要工具,然而前人研究常假設出流邊界長度為無窮遠,此假設不符合實際情況,而有限邊界多為一維系統,無法適當描述現實問題。本研究目的為發展有限域二維溶質傳輸解析解模式,考慮移流、延散傳輸、線性平衡吸附、一階衰減項和源/匯項,以描述二維溶質的傳輸行為,進一步考慮初始、邊界條件和源/匯項為Dirac delta、常數、Heaviside step、週期性正弦或指數衰減函數。解析解推導主要是連續使用各種積分轉換消去時間微分項與空間微分項,將偏微分方程式轉換為代數方程式,再由一系列逆轉換求得完全顯示解析解。本研究發展之解析解與有限差分(Finite difference method)數值方法進行相互驗證,兩者的驗證結果十分吻合。此模式可應用於週期性正弦函數的參數推估,以推求現地在有限資料中的延散係數,且可適當使用於現地尺度場址中,了解污染物傳輸行為且作為初步污染整治的基礎,此模式可作為數值模式測試與驗證的工具。
摘要(英) Contaminant transport model is an important tool for predicting and describing the movement of contaminants in the subsurface. However, most of analytical solutions are developed only for infinite or semi-infinite spatial domains. One primary use of analytical solutions is to test numerical models that compute solutions on finite domains, it would be very useful to also have analytical solutions for finite domains. The object of develop an analytical model for two-dimensional advection-dispersion equation in a finite domain. The model involves a wide variety of time-dependent boundary inputs, spatial-dependent initial distributions, and time- and spatial-dependent zero-order productions. The analytical solutions are obtained by successively applying different integral transforms corresponding to the governing equations and its associated initial and boundary conditions. The analytical solutions are verified against the numerical solutions using a finite difference scheme. Results show perfect agreements between the analytical and numerical solutions. This model can be applied to estimate the source of the periodically sinusoidal functions in the few information field data, to simulate the transport of temporal change in contaminant source releases. The model useful for testing or benchmarking numerical transport codes because of the incorporation of a finite spatial domain.
關鍵字(中) ★ 污染傳輸
★ 移流-延散方程式
★ 二維
★ 有限域
★ 解析解
關鍵字(英) ★ Contaminant transport
★ advection-dispersion equation
★ two-dimensional
★ finite domain
★ Analytical solution
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
符號說明 viii
一、 緒論 1
1-1 研究背景 1
1-2 文獻回顧 4
1-3 研究目的 9
二、 二維溶質傳輸解析解模式 13
2-1 數學模式建立 13
2-2 解析解推導 17
三、 模式收斂性測試與案例驗證測試 31
3-1 收斂性測試 31
3-2 解析解模式測試 37
3-2-1 初始條件 38
3-2-2 源/匯項 40
3-2-3 邊界條件 42
四、 結果與討論 48
4-1 出流邊界條件之影響 48
4-2 週期性正弦邊界應用 52
4-3 Multiple sources應用 56
五、 結論與建議 61
5-1 結論 61
5-2 建議 62
參考文獻 63
附錄一 68
附錄二 80

參考文獻 [1] van Genuchten, M. Th., “Determining transport parameters from solute displacement experiments”, Research Report, Vol. 118, U.S. Salinity Lab., Riverside, CA., 1980.
[2] van Genuchten, M. Th., “Non-equilibrium transport parameters from miscible displacement experiments”, Research Report, Vol. 119, U.S. Salinity Lab., Riverside, CA., 1981.
[3] Yeh, G.T., “AT123D: Analytical Transient One-, Two-, and Three-Dimensional Simulation of Waste Transport in the Aquifer System”, ORNL-5602, Oak Ridge National Laboratory, 1981.
[4] Jury, W. A., Spencer, W. F., and Farmer. W. J., “Behavior assessment model for trace organics in soil: I. Description of model”, Journal of Environmental Quality, Vol. 12(4), pp. 558-564, 1983.
[5] van Genuchten, M. Th., “Convective-dispersive transport of solutes involved in sequential first-order decay reactions”, Computers and Geosciences, Vol. 11(2) , pp. 129-147, 1985.
[6] Wexler, E.J., “Analytical solutions for one-, two- and three-dimensional solute transport in groundwater systems with uniform flow. U. S. Geological Survey”. Techniques of Water Resources Investigations, Book 3, Chapter B7, 190 pp, 1992.
[7] Leij, F. J., and Bradford, S. A., “3DADE: A computer program for evaluating three-dimensional equilibrium solute transport in porous media”, Research Report, No. 134. Riverside, Cal.: USDA-ARS U.S. Salinity Laboratory, 1994.
[8] Leij, F. J., and Bradford, S. A., “N3DADE: A computer program for evaluating nonequilibrium three-dimensional equilibrium solute transport in porous media”, Research Report, No. 143. Riverside, Cal.: USDA-ARS U.S. Salinity Laboratory, 1997.
[9] Newell, C.J., McLeod, R.K., and Gonzales, J., “BIOSCREEN Naturel Attenuation Decision Support System, User’s Manual Version 1.3”, EPA/600/R-96/087. USEPA Office of Research and Development, Washington, D.C., 1996.
[10] Toride, N., Leij, F. J., and van Genuchten, M. Th., “The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Version 2.1”, Research Report No. 137. Riverside, Cal.: USDA-ARS U.S. Salinity Laboratory, 1999.
[11] Aziz, C.E., C.J., Newell, J.R. Gonzales, P.E. Haas, T.P. Clement, and T. Sun, “BIOCHLOR Natural Attenuation Decision Support System, User’s Manual Version 1.0”, EPA/600/R-00/008, USEPA Office of Research and Development, Washington D.C., 2000.
[12] Chen, J. S., and Liu, C. W., “Generalized analytical solution for advection-dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition”, Hydrology and Earth System Sciences, Vol. 15(8), pp. 2471-2479, 2011.
[13] Chen, J. S., Liu, C. W., Liang, C. P., Lai, K. H., “Generalized analytical solutions to sequentially coupled multi-species advective-dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition”, Journal of Hydrology, Vol. 456-457, pp. 101-109, 2012.
[14] van Genuchten, M. Th., and Parker, J. C., “Boundary conditions for displacement experiments through short laboratory soil columns”, Soil Science Society of America Journal,Vol.48(4), pp.703-708, 1984.
[15] Parker, J. C. and van Genuchten, M. Th., “Flux-averaged and volume-averaged concentrations in continuum approaches to solute transport”, Water Resources Research,Vol.20(7), pp.866-872, 1984.
[16] Parlange, J. Y., Barry, D. A. and Starr, J. L., “Comments on “Boundary conditions for displacement experiments through short laboratory soil columns” ”, Soil Science Society of America Journal, Vol.49(5), pp.1325, 1985.
[17] Kreft, A. and Zuber, A., “Comment on “Flux averaged and volume averaged concentrations in continuum approaches to solute transport” ”, Water Resources Research, Vol.22, pp.1157 -1158, 1986.
[18] Pérez Guerrero, J. S. P., Pimentel, L. C. G., Skaggs, T. H., and van Genuchten, M. Th., “Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique”, International Journal of Heat and Mass Transfer, Vol. 52, pp.3297-3304, 2009.
[19] Parlange, J. Y. and Starr, J. L., “Dispersion in soil column: effect of boundary conditions and irreversible reactions”, Soil Science Society of America Journal, Vol.42, pp.15-18, 1978.
[20] Parlange, J. Y., Starr, J. L., van Genuchten, M. Th., Barry, D. A., and Parker, J. C., “Exit condition for miscible displacement experiments in finite columns”, Soil Science, Vol.153(3), pp.165-171, 1992.
[21] Chen, J. S., Chen, J. T., Liu, C. W., Liang, C. P., and Lin, C. W., “Analytical solutions to two-dimensional advection-dispersion equation in cylindrical coordinates in finite domain subject to first- and third-type inlet boundary conditions”, Journal of Hydrology, Vol.405, pp. 522-531, 2011.
[22] Zheng, C. and Bennett, G. D., “Applied Contaminant Transport Modeling, 2nd Edition”, Hoboken, NJ: Wiley, pp. 282-283, 2002.
[23] Cotta, R. M., “Integral Transforms in Computational Heat and Fluid Flow”, CRC Press, Boca Raton, FL, 1993.
[24] Adrian, D. D., Yu, F. X., and Barbe, D., ‘‘Water quality modelling for a sinusoidally varying waste discharge concentration’’, Water Research, Vol. 28, pp. 1167-1174, 1994.
[25] Clement, T. P., Johnson, C. D., Sun, Y., Klecka, G. M., and Bartlett, C., “Natural attenuation of chlorinated ethane compounds: model development and field-scale application at the Dover site”, Journal of Contaminant Hydrology, Vol. 42, pp. 113-140, 2000.
指導教授 陳瑞昇(Jui-sheng Chen) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明