博碩士論文 102682001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.138.134.107
姓名 詹智丞(Jyh Cherng Jan)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 利用高密度低價位地震網決定同震變形與破裂方向
(Estimations of Coseismic Deformation and Rupture Directivity with a Dense Low-Cost Seismic Network)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自2012年起,臺灣大學地震預警團隊開始大規模在臺灣各地廣佈微機電系統加速度儀的高密度低價位地震網,以P波初動警示的概念名為P-Alert,截至2018年12月已有692站,這些測站提供豐富的即時資料,近年來促進許多科學研究與實際應用,而在本研究中,除原始P-Alert地震預警的宗旨外,並將其地震網能力延伸至同震變形位移量與地震破裂方向性之偵測兩方面。
在同震變形位移量研究中,先進行P-Alert資料之前處理,將資料還原成尚未套用動態平均演算前的狀態,之後利用自動基線修正方法,始獲得同震變形位移量,選擇過去ML >6的地震事件,比較從P-Alert網與臺灣強地動觀測計畫(TSMIP)加速度儀,以及全球定位系統(GPS)的同震變形位移量,發現當位移量大於2 cm時,P-Alert提供可信賴的數值,這說明低價位地震網亦可近即時的提供防救災的關鍵資訊。
在地震破裂方向性研究中,利用P-Alert近場(<25 km)即時強地動速度資料來即時的判識地震破裂方向性的資訊,並對遠方提供強地動預警。此方法建構在即時震度圖的內插方法與方向性的衰減回歸分析上。由16個臺灣與美國加州中到大型規模地震事件的分析,顯示在17秒後可獲得穩定結果,而該結果也與過去研究相符;此外,本研究亦提供破裂方向性放大強度的指標,在臺灣地區,ML≥6地震皆普遍有顯著的方向性效應。因此,P-Alert近即時方向性訊息可增進地震預警系統能力,並提供遠方更準確的強地動預估。
摘要(英) Since 2012, the earthquake early warning (EEW) research group at the National Taiwan University has widely deployed a dense seismic network based on micro-electro-mechanical system (MEMS) P-wave-alert-device (P-Alert) accelerometers, namely P-Alert network in Taiwan. The total number of stations is up to 692 until December 2018, and the network has provided abundant real-time data to facilitate many successful research studies and applications in recent years. Here, in addition to the original purpose of earthquake early warning, we extend the P-Alert network applicability to two new aspects: coseismic deformation (Cd) estimation and near-real-time earthquake rupture directivity determination.
For the Cd estimation, we select the data of ML>6 earthquakes of P-Alert network to process. Using a data preprocessing scheme to recover the dynamic average embedded within the P-Alert data, we adopt an automatic baseline correction approach for the accelerograms to determine the Cd values. Comparing the Cd values from P-Alert, the global positioning system (GPS), and the Taiwan Strong Motion Instrumentation Program (TSMIP) network, the P-Alert network can provide the reasonable estimation when Cd value greater than 2 cm in near-real-time, which offers crucial information for seismic hazard mitigation and demonstrates the ability of low-cost MEMS system.
For the near-real-time earthquake rupture directivity determination, we estimate directivity information using near-field (<25km) real-time ground motion accelerograms from P-Alert and provide warning for far-field regions. The method is based on real-time shaking map interpolation and directional attenuation regression analysis. For the 16 moderate-to-large magnitude earthquakes in Taiwan and California, the results can be obtained stably within 17 s and are consistent with previous studies. We also propose an indicator of the strength of directivity amplification that shows a prevalence of strong directivity effect for ML≥6 earthquakes in Taiwan. Such near-real-time directivity information is therefore useful for earthquake early warning systems to provide more accurate ground shaking alerts for the far-field areas where the strong shaking has yet arrives.
關鍵字(中) ★ 高密度低價位地震網
★ 同震變形
★ 地震破裂方向
關鍵字(英) ★ a Dense Low-Cost Seismic Network
★ Coseismic Deformation
★ Earthquake of Rupture Directivity
論文目次 論文電子檔授權書 i
論文指導教授推薦書 ii
論文口試委員審定書 iii
摘 要 iv
Abstract v
誌 謝 vii
目 錄 ix
圖 目 xii
表 目 xvi
第一章 緒論 1
1.1 研究動機與目的 1
1.2 本文範疇 3
第二章 臺灣微機電低價位P波警報地震網 11
2.1 前言 11
2.2 P波警報器P-Alert 11
2.3 地震網資料處理 12
2.4 地震網發展成果與應用 13
第三章 同震變形位移量之估算 23
3.1 前言 23
3.2 使用資料與處理方法 25
3.2.1 使用資料 25
3.2.2 處理方法 26
3.3 結果 30
3.4 討論與結論 32
第四章 近場強地動之近即時地震破裂方向性估算 48
4.1 前言 48
4.2 P-Alert地震網與即時資料 49
4.3 方法 50
4.4 破裂方向性判定與實際強地動預警系統的處理 51
4.5 方向性放大函數Fd與地動衰減斜率 53
4.6 討論與結論 54
第五章 未來工作 99
5.1 運用同震變形資料快速建構有限斷層法模式 99
5.2 地震破裂方向性在地震預警上的運用 100
5.3 P波警報地震網人工智慧的運用 102
5.3.1 卷積神經網絡模式CNN 103
5.3.2 南加州地震網人工智慧的應用 104
5.3.3 目前進展與未來展望 106
第六章 總結 119
參考文獻 121
附錄(A) 11個地震PGA 25公里之破裂方向結果 131
附錄(B) 4個ML>6地震相異剖面長度分析方向結果 142
附錄(C) 方向性函數Fd與地動衰減斜率的連結 166
附錄(D) How Well Can We Extract the Permanent Displacement from Low-Cost MEMS Accelerometers? 168
附錄(E) Near-Real-Time Estimates on Earthquake Rupture Directivity Using Near-Field Ground Motion Data From a Dense Low-Cost Seismic Network 175
參考文獻 Angelier, J., Lee, J.-C., Chu, H.-T., Hu, J.-C., Lu, C.-Y., Chan, Y.-C., et al. (2001). Le séisme de Chichi (1999) et sa place dans l′orogène de Taiwan, Comptes Rendus de l′Académie des Sciences - Series IIA - Earth and Planetary Science, Volume 333, Issue 1.
Allen, R. M. & Kanamori, H. (2003). The potential for earthquake early warning in southern California. Science, 300, 786. doi:10.1126/science.1080912
Allen, R. M., Gasparini, P., Kamigaichi, O., & Bose, M. (2009). The Status of Earthquake Early Warning around the World: An Introductory Overview. Seismological Research Letters, 80(5). doi:10.1785/gssrl.80.5.682
Bogdanov, V. E., & Graizer, V. M. (1976). The determination of the residual displacement of the ground from the seismogram. Reports of the Academy of Sciences of the USSR, 229, 59–62.
Boatwright, J. (2007). The Persistence of Directivity in Small Earthquakes. Bulletin of the Seismological Society of America, 97, 1850-1861. Seismological Research Letters, 80(5). doi:10.1785/gssrl.80.5.682
Boore, D. M. (2001). Effect of baseline corrections on displacement and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America, 91, 1199 – 1211. doi:10.1785/0120000703
Bose, M., Smith, D. E., Felizardo, C., Meier, M.-A., Heaton, T. H., & Clinton, J. F. (2018). FinDer v.2: Improved real-time ground-motion predictions for M2–M9 with seismic finite-source characterization. Geophysical Journal International, 212, 725-742.
Chang, C.-H., Wu, Y.-M., Chen, D.-Y., Shin, T.-C., Chin, T.-L., & Chang, W.-Y. (2012). An examination of telemetry delay in the central weather bureau seismic network. Terrestrial Atmospheric and Oceanic Sciences, 23 (3), 261–268.
Chao, W.-A., Wu, Y.-M., & Zhao, L. (2010). An automatic scheme for baseline correction of strong-motion records in coseismic deformation determination. Journal of Seismology, 14, 495-504. doi:10.1007/s10950-009-9178-7
Chen, D.-Y., Wu, Y.-M., & Chin, T.-L. (2015). Incorporating low-cost seismometers into the Central Weather Bureau seismic network for Earthquake Early Warning in Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 26, 503-513. doi: 10.3319/TAO.2015.04.17.01(T)
Chuang, R. Y., Johnson, K. M., Wu, Y.-M., Ching, K.-E., & Kuo, L.-C. (2013). A midcrustal ramp‐fault structure beneath the Taiwan tectonic wedge illuminated by the 2013 Nantou earthquake series. Geophysical Research Letters, 40, 5080-5084. doi: 10.1002/grl.51005
Chuang, R. Y., Johnson, K. M., Kuo, Y.-T., Wu, Y.-M., Chang, C.-H., & Kuo, L.-C. (2014). Active back thrust in the eastern Taiwan suture revealed by the 2013 Rueisuei earthquake: Evidence for a doubly vergent orogenic wedge? Geophysical Research Letters, 41, 3464-3470. doi: 10.1002/2014GL060097
Cirella, A., Piatanesi, A., Cocco, M., Tinti, E., Scognamiglio, L., Michelini, A., et al. (2009). Rupture history of the 2009 L’Aquila (Italy) earthquake from non-linear joint inversion of strong motion and GPS data. Geophysical Research Letters, 36, L19304. doi:10.1029/2009GL039795
Cochran, E. S., Lawrence, J. F., Christensen, C., & Jakka, R. S. (2009). The Quake-Catcher Network: Citizen science expanding seismic horizons. Seismological Research Letters, 80(1), doi: 10.1785/gssrl.80.1.26.
Cochran, E. S., Kohler, M. D., Given, D. D., Guiwits, S., Andrews, J., Meier, M.-A., et al. (2017). Earthquake Early Warning ShakeAlert System: Testing and Certification Platform. Seismological Research Letters, 89(1). doi:10.1785/0220170138
Convertito, V., Caccavale, M., De Matteis, R., Emolo, A., Wald, D. & Zollo, A. (2012). Fault Extent Estimation for Near-Real-Time Ground-Shaking Map Computation Purposes. Bulletin of the Seismological Society of America, 102, 661-679.
Gentili, S., & Michelini, A. (2006). Automatic picking of P and S phases using a neural tree. Journal of Seismology, 10(1), 39 – 63. doi:10.1007/s10950-006-2296-6
Graizer, V. M. (1979). Determination of the true displacement of the ground from strong-motion recordings. Izvestiya, Physics of the Solid Earth, 15, no. 12, 875-885.
Graizer, V. M. (2006). Tilts in strong ground motion. Bulletin of the Seismological Society of America, 96, 2090-2102.
Gutenberg, B., & Richter, C. R. (1942). Earthquake magnitude, intensity, energy and acceleration. Bulletin of the Seismological Society of America, 32, 163-191.
Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research, 84, B5, 2348–2350
Hardebeck, J. L., & Shearer, P. M. (2002). A new method for determining fi rst-motion focal mechanisms. Bulletin of the Seismological Society of America, 92(6), 2264 – 2276. doi:10.1785/0120010200
Haskell, N. A. (1964). Total energy and energy spectral density of elastic wave radiation from propagating faults. Bulletin of the Seismological Society of America, 54, 1811–1841.
Holland, A. (2003). Earthquake data recorded by the MEMS accelerometer: Field testing in Idaho. Seismological Research Letters, 74, 20–26. doi:10.1785/gssrl.74.1.20
Hsiao, N.-C., Wu, Y.-M., Shin T.-C., Zhao, L., & Teng, T.-L. (2009). Development of earthquake early warning system in Taiwan. Geophysical Research Letters, 36, L00B02. doi:10.1029/2008GL036596
Hsiao, N.-C., Wu, Y.-M., Zhao, L., Chen, D.-Y., Huang, W.-T., Kuo, K.-H., Shin T.-C., & Leu, P.-L. (2011). A new prototype system for earthquake early warning in Taiwan, Soil Dynamics and Earthquake Engineering , 31, 201-208. doi:10.1016/j.solidyn.2010.01.008
Hsieh, C.-Y., Wu, Y.-M., Chin, T.-L., Kuo, K.-H., Chen, D.-Y., Wang, K.-S., Chan, Y.-T., Chang, W.-Y., Li, W.-S., & Ker, S.-H. (2014). Low cost seismic network practical applications for producing quick shaking maps in Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 25, 617–624. doi: 10.3319/TAO.2014.03.27.01(T)
Hsieh, C.-Y., Chao, W.-A., & Wu, Y.-M. (2015). An examination of the threshold-based earthquake early warning approach using a low cost seismic network. Seismological Research Letters, 86, 1664–1667. doi: 10.1785/0220150073
Hsu, M.-T. (2003). Seismological observation and service in Taiwan (up to 1970), in International Handbook of Earthquake and Engineering Seismology, W. H. K. Lee, H. Kanamori, & P. C. Jennings (Editors), New York, Academic Press.
Hsu, T.-Y., Yin, R.-C., & Wu, Y.-M. (2018). Evaluating post-earthquake building safety using economical MEMS seismometers. Sensors, 18(5), 1437. doi:10.3390/s18051437
Huang, H.-H., Aso, N., & Tsai, V. C. (2017). Toward automated directivity estimates in earthquake moment tensor inversion. Geophysical Journal International, 211, 1084-1098. doi:10.1093/gji/ggx354
Huang, M.-H., Tung, H., Fielding, E., Huang, H.-H., Liang, C., Huang, C., & Hu, J.-C. (2016). Multiple fault slip triggered above the 2016 Mw 6.4 MeiNong earthquake in Taiwan. Geophysical Research Letters, 43, 7459-7467. doi:10.1002/2016GL069351
Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature, 435,933–936.
Imperatori, W. & Mai, P. M. (2013). Broad-band near-field ground motion simulations in 3-dimensional scattering media. Geophysical Journal International, 192, 725-744.
Iwan, W. D., Moser, M. A., & Peng, C. Y. (1985). Some observations on strong-motion earthquake measurement using a digital acceleration. Bulletin of the Seismological Society of America, 75, 1225-1246.
Jan, J. C., Chao, W.-A., Wu, Y.-M., Chen, C.-C., & Lin, C.-H. (2017). How well can we extract the permanent displacement from low-cost MEMS accelerometers? Sensors, 17(11), 2643. doi:10.3390/s17112643
Jian, P.-R., Hung, S.-H., Meng, L., & Sun, D. (2017). Rupture characteristics of the 2016 Meinong earthquake revealed by the back projection and directivity analysis of teleseismic broadband waveforms. Geophysical Research Letters, 44. doi:10.1002/ 2017GL072552
Kanamori, H., Hauksson, E., & Heaton, T. (1997). Real-time seismology and earthquake hazard mitigation, Nature 390, 461–464.
Kanamori, H., Ye, L., Huang, B.-S., Huang, H.-H., Lee, S.-J., Liang, W.-T., et al. (2017). A strong-motion hot spot of the 2016 Meinong, Taiwan, earthquake (Mw=6.4). Terrestrial, Atmospheric and Oceanic Sciences, 28. doi:10.3319/TAO.2016.10.07.01
Kikuchi, M., & Kanamori, H. (1991). Inversion of complex body waves–III. Bulletinof the Seismological Society of America, 81, 2335–2350.
Kong, Q., Allen, R. M., & Schreier, L. (2016). MyShake: Initial observations from a global smartphone seismic network. Geophysical Research Letters, 43. doi:10.1002/2016GL070955
Kuo, C.-H., Wen, K.-L., Hsieh, H.-H., Lin, C.-M., Chang, T.-M. Chang, & Kuo, K.-W. (2012). Site Classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering Geology, 129-130, 68-75.
Lee, C.-T., Hsieh, B.-S., Sung, C.‐H., & Lin, P.‐S. (2012). Regional Arias Intensity Attenuation Relationship for Taiwan Considering Vs30. Bulletin of the Seismological Society of America, 102 (1): 129–142. doi:10.1785/0120100268
Lee, S.-J. (2017). Lessons learned from source rupture to strong ground motion simulations: An example from Taiwan. Bulletin of the Seismological Society of America, 107(5), 2106–2116. doi:10.1785/0120170030
Li, Z., Meier, M.-A., Hauksson, E., Zhan, Z., & Andrews, J. (2018). Machine learning seismic wave discrimination: Application to earthquake early warning. Geophysical Research Letters, 45, 4773 – 4779. doi: 10.1029/2018GL077870
Lin, Y.-Y., Yeh, T.-Y., Ma, K.-F., Song, T.-R. A., Lee, S.-J., Huang, B.-S., & Wu, Y.-M. (2018). Source Characteristics of the 2016 Meinong (ML 6.6), Taiwan, Earthquake, Revealed from Dense Seismic Arrays: Double Sources and Pulse-like Velocity Ground Motion. Bulletin of the Seismological Society of America, 108. doi:10.1785/0120170169
Lindsey, N. J., Martin, E. R., Dreger, D. S., Freifeld, B., Cole, S., James, S. R., et al. (2017). Fiber-optic network observations of earthquake wavefields. Geophysical Research Letters, 44. doi:10.1002/2017GL075722
Liu, K.-S., Shin, T.-C., & Tsai Y.-B. (1999). A free field strong motion network in Taiwan: TSMIP, Terrestrial Atmospheric and Oceanic Sciences, 10, 377–396.
Mai, P. M. (2009). Ground-motion complexity and scaling in the near-field of earthquake ruptures. Encyclopedia of Complexity and System Sciences, pp. 4435–4474, eds Lee, W. & Meyers, R., Springer, New York.
Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., & Rabaute, T. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364(6433),138–142.
McCloskey, J., Nalbant, S., & Steacy, S. (2005). Earthquake risk from co-seismic stress. Nature, 434, 291.
McGuire, J. J., Zhao, L. & Jordan, T. H. (2001). Measuring the second-degree moments of earthquake space-time distributions. Geophysical Journal International, 145, 661-678.
Nippress, S. E. J., Rietbrock, A., & Heath, A. E. (2010). Optimized automatic pickers: Application to the ANCORP data set. Geophysical Journal International, 181(2), 911 – 925. doi:.10.1111/j.1365-246X.2010.04531.x
Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half‐space, Bulletin of the Seismological Society of America, 82, 1018–1040.
Perol, T., Gharbi, M., & Denolle, M. (2018). Convolutional neural network for earthquake detection and location. Science Advances, 4(2),e1700578. doi: 10.1126/sciadv.1700578
Ripperger, J., Mai, P. M., & Ampuero, J.-P. (2008). Variability of Near-Field Ground Motion from Dynamic Earthquake Rupture Simulations. Bulletin of the Seismological Society of America, 98, 1207-1228.
Ross, Z. E., & Ben-Zion, Y. (2016). Toward reliable automated estimates of earthquake source properties from body wave spectra. Journal of Geophysical Research, 121, 4390–4407. doi: 10.1002/2016JB013003
Ross, Z. E., Meier, M.‐A., & Hauksson, E. (2018). P‐wave arrival picking and first-motion polarity determination with deep learning, Journal of Geophysical Research, 123, 5120–5129. doi: 10.1029/2017JB015251
Rowshandel, B. (2010). Directivity Correction for the Next Generation Attenuation (NGA) Relations. Earthquake Spectra, 26(2), 525-559.
Somerville, P. G., Smith, N. F., Graves, R. W., & Abrahamson, N. A. (1997). Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity. Seismological Research Letters, 68(1), 199-222.
Spudich, P. & Chiou, B. S. J. (2008). Directivity in NGA Earthquake Ground Motions: Analysis Using Isochrone Theory. Earthquake Spectra, 24(1), 279-298.
Tan, Y., & Helmberger, D. (2010). Rupture directivity of the 2003 Big Bear sequence. Bulletin of the Seismological Society of America, 100(3), 1089–1106, doi:10.1785/0120090074.
Toda, S., Lin, J., & Stein, R. S. (2011). Using the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure. Earth, Planets and Space, 63(7), 725–730. doi:10.5047/eps.2011.05.010
Tsai, Y.-B., Teng, T.-L., Chiu, J.-M. & Lin, H.-L. (1977). Tectonic implications of the seismicity in the Taiwan region, Mem. Geol. Soc. China, 2, 13 – 41.
Wang, K.-S., Chao, W.‐A., Mittal, H., & Wu, Y.‐M. (2018). Building effects on the P‐Alert‐based real‐rime shaking map determination. Seismological Research Letters, 89 (6), 2314–2321. doi:10.1785/0220170252
Wei, S., Barbot, S., Graves, R., Lienkaemper, J. J., Wang, T., Hudnut, K., et al. (2015). The 2014 Mw 6.1 South Napa Earthquake: A unilateral rupture with shallow asperity and rapid afterslip. Seismological Research Letters, 86 (2A), 344–354. doi:10.1785/0220140249
Wen, Y.-Y., Miyake, H., Yen, Y.-T., Irikura, K., & Ching, K.-E. (2014). Rupture directivity effect and stress heterogeneity of the 2013 Nantou blind-thrust earthquakes, Taiwan. Bulletin of the Seismological Society of America, 104. doi:10.1785/0120140109
Wu, Y.-M., Chen, C.-C., Shin T.-C., Tsai, Y.-B., Lee, W. H. K., & Teng, T.-L. (1997). Taiwan Rapid Earthquake Information Release System, Seismological Research Letters, 68, 931–943.
Wu, Y.-M., Lee, W. H. K., Chen, C.-C., Shin T.-C., Teng, T.-L. & Tsai, Y.-B. (2000). Performance of the Taiwan Rapid Earthquake Information Release System (RTD) during the 1999 Chi-Chi (Taiwan) earthquake, Seismological Research Letters, 71, 338–343.
Wu, Y.-M., Shin, T.-C., & Chang, C.-H. (2001). Near Real-Time Mapping of Peak Ground Acceleration and Peak Ground Velocity Following a Strong Earthquake. Bulletin of the Seismological Society of America, 91, 1218-1228.
Wu, Y.-M., & Teng, T.-L. (2002). A virtual sub-network approach to earthquake early warning, Bulletin of the Seismological Society of America, 92, 2008–2018.
Wu, Y.-M., Teng, T.-L., Shin, T.-C., & Hsiao, N.-C. (2003). Relationship between peak ground acceleration, peak ground velocity, and intensity in Taiwan. Bulletin of the Seismological Society of America, 93(1), 386 – 396. doi:10.1785/0120020097
Wu, Y.-M. & Kanamori, H. (2005a). Experiment on an Onsite Early Warning Method for the Taiwan Early Warning System. Bulletin of the Seismological Society of America, 95, 347-353.
Wu, Y.-M. & Kanamori, H. (2005b). Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves. Bulletin of the Seismological Society of America, 95, 1181-1185.
Wu, Y.-M., Chen, Y.-G., Shin, T.-C., Kuochen, H., Hou, C.-S., Hu, J.-C., Chang, C.-H., Wu, C.-F., & Teng, T.-L. (2006a). Coseismic vs. interseismic ground deformations, faults rupture inversion and segmentation revealed by 2003 Mw 6.8 Chengkung earthquake in eastern Taiwan. Geophysical Research Letters, 33, L02312. doi:10.1029/2005GL024711
Wu, Y.-M., Yen, H.-Y., Zhao, L., Huang, B.-S., & Liang, W.-T. (2006b). Magnitude determination using initial P Waves: A single-station approach, Geophysical Research Letters, 33, L05306. doi:10.1029/2005GL025395
Wu, Y.-M., & Zhao, L. (2006). Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning, Geophysical Research Letters, 33, L16312.
Wu, Y.-M., & Wu, C.-F. (2007). Approximate recovery of coseismic deformation from Taiwan strong-motion records. Journal of Seismology, 11, 159-170. doi:10.1007/s10950-006-9043-x
Wu, Y.-M., Lin, T.-L., Chao, W.-A., Huang, H.-H., Hsiao, N.-C., & Huang, C.-H. (2011). Faster short-distance earthquake early warning using continued monitoring of filtered vertical displacement – a case study for the 2010 Jiasian earthquake, Taiwan, Bulletin of the Seismological Society of America, 101, 701–709. doi:10.1785/0120100153
Wu, Y.-M., Chen, D.-Y., Lin, T.-L., Hsieh, C.-Y., Chin, T.-L., Chang, W.-Y., Li, W.-S., & Ker, S.-H. (2013). A high-density seismic network for earthquake early warning in Taiwan based on low cost sensors. Seismological Research Letters, 84, 1048–1054. doi: 10.1785/0220130085
Wu, Y.-M. & Lin, T.-L. (2013). A test of earthquake early warning system using low cost accelerometer in Hualien, Taiwan, in “Early Warning for Geological Disasters - Scientific Methods and Current Practice”, published by Springer. F. Wenzel and J. Zschau (eds.); ISBN:978-3-642-12232-3, Springer Berlin, Heidelberg, New York.
Wu, Y.-M. (2015). Progress on development of an earthquake early warning system using low cost sensors. Pure and Applied Geophysics, 172, 2343–2351, doi: 10.1007/s00024-014-0933-5.
Wu, Y.-M., Liang, W.-T., Mittal, H., Chao, W.-A., Lin, C.-H., Huang, B.-S., & Lin, C.-M. (2016). Performance of a low-cost earthquake early warning system (P-Alert) during the 2016 ML 6.4 Meinong (Taiwan) earthquake. Seismological Research Letters, 87, 1050-1059. doi: 10.1785/0220160058
Wu, Y.-M., Mittal, H., Huang, T.-C., Yang, B. M., Jan, J. C., & Chen, S. K. (2019). Performance of a Low‐Cost Earthquake Early Warning System (P-Alert) and Shake Map Production during the 2018 Mw 6.4 Hualien, Taiwan, Earthquake. Seismological Research Letters, 90 (1), 19–29. doi: 10.1785/0220180170
Yang, B. M., Huang, T.-C., & Wu, Y.-M. (2018). ShakingAlarm: A Nontraditional Regional Earthquake Early Warning System Based on Time-Dependent Anisotropic Peak Ground-Motion Attenuation Relationships. Bulletin of the Seismological Society of America, 108 (3A), 1219-1230.
Yen, Y. T., & Ma, K. F. (2011). Source-scaling relationship for M 4.6–8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan. Bulletin of the Seismological Society of America, 101(2). doi: 10.1785/0120100046
Yu, S.-B., Chen, H.-Y., & Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41–59. doi: 10.1016/S0040-1951(96)00297-1
Yu, S.-B., Kuo, L.-C., Punongbayan, R. S., & Ramos, E. G. (1999). GPS observation of crustal deformation in the Taiwan-Luzon region. Geophysical Research Letters, 26, 923–926. doi: 10.1029/1999GL900148
葉家豪 (2017),[資料分析&機器學習] 第5.1講: 卷積神經網絡介紹(Convolutional Neural Network),2019年01月09日取自http://medium.com/ @yehjames/資料分析-機器學習-第5-1講-卷積神經網絡介紹-convolutional-neural-network-4f8249d65d4f
鄭世楠、葉永田(2004),台灣百年來的大地震,科學發展,373,68-75
指導教授 吳逸民 陳建志 林正洪(Yih-Min Wu Chien-Chih Chen Cheng-Horng Lin) 審核日期 2019-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明